如圖,四邊形OABC是一張放在平面直角坐標系中的正方形紙片.點O與坐標原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現(xiàn)將紙片折疊,使頂點C落在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標;
(2)求折痕EF所在直線的解析式;
(3)設(shè)點P為直線EF上的點,是否存在這樣的點P,使得以P,F(xiàn),G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

【答案】分析:(1)根據(jù)正方形的性質(zhì),EB=2,根據(jù)MN∥y軸,N(3,0),MN⊥EB且MB=NA=1,可求EM=1,而EG=EC=2,所以sin∠EGM=,即∠EGM=30°,所以MG=EGcos30°=,即G(3,4-);
(2)先求得F(0,4-2),E(2,4),設(shè)直線EF的解析式:y=kx+b(k≠0),利用待定系數(shù)法可求得,折痕EF所在直線解析式:y=x+4-2;
(3)分為以下幾種情況:PF=FG,PF=PG,PG=FG,分別計算可得,P1(-,1-2),P2(1,4-),P3,7-2),P4(3,4+).
解答:解:(1)∵四邊形ABCO是正方形,
∴BC=OA=4,
∵E為CB中點,
∴EB=2,
∵MN∥y軸,N(3,0),
∴MN⊥EB且MB=NA=1,
∴EM=1,
而EG=EC=2,
∴sin∠EGM=,
∴∠EGM=30°,
∴MG=EGcos30°=
∴G(3,4-);

(2)∵∠EGM=30°,
∴∠MEG=∠FEG=∠CEF=60°,
∴CF=CEtan60°=2
∴FO=4-2,
∴F(0,4-2),E(2,4),
設(shè)直線EF的解析式:y=kx+b(k≠0),

,
∴折痕EF所在直線解析式:y=x+4-2;

(3)P1(-,1-2),P2(1,4-),P3,7-2),P4(3,4+).
點評:主要考查了函數(shù)和幾何圖形的綜合運用.解題的關(guān)鍵是會靈活的運用函數(shù)圖象的性質(zhì)和交點的意義求出相應(yīng)的線段的長度或表示線段的長度,再結(jié)合具體圖形的性質(zhì)求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運精英家教網(wǎng)動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標系中的正方形紙片.點O與坐標原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現(xiàn)將紙片折疊,使頂點C落精英家教網(wǎng)在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標;
(2)求折痕EF所在直線的解析式;
(3)設(shè)點P為直線EF上的點,是否存在這樣的點P,使得以P,F(xiàn),G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當點E到達點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標;
(2)在(1)的條件下,設(shè)△OEF與四邊形OAMP重疊面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標,若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數(shù)y=
k
x
的圖象過點B,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數(shù)精英家教網(wǎng)是( 。
(1)直線OA的函數(shù)解析式為y=
4
3
x

(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標為(S-5,4)
(4)若點P在線段BC上時,P點的坐標為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案