如圖1,已知拋物線C經(jīng)過(guò)原點(diǎn),對(duì)稱(chēng)軸與拋物線相交于第三象限的點(diǎn)M,與x軸相交于點(diǎn)N,且。
(1)求拋物線C的解析式;
(2)將拋物線C繞原點(diǎn)O旋轉(zhuǎn)1800得到拋物線,拋物線與x軸的另一交點(diǎn)為A,B為拋物線上橫坐標(biāo)為2的點(diǎn)。
①若P為線段AB上一動(dòng)點(diǎn),PD⊥y軸于點(diǎn)D,求△APD面積的最大值;
②過(guò)線段OA上的兩點(diǎn)E、F分別作x軸的垂線,交折線O-B-A于E1、F1,再分別以線段EE1、FF1為邊作如圖2所示的等邊△AE1E2、等邊△AF1F2,點(diǎn)E以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)O向點(diǎn)A運(yùn)動(dòng),點(diǎn)F以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)A向點(diǎn)O運(yùn)動(dòng),當(dāng)△AE1E2有一邊與△AF1F2的某一邊在同一直線上時(shí),求時(shí)間t的值。
解:(1)∵拋物線的對(duì)稱(chēng)軸為,∴ON=3。
∵,∴NM=9!郙(-3,-9)。
∴設(shè)拋物線C的解析式為。
∵拋物線C經(jīng)過(guò)原點(diǎn),∴,即。
∴拋物線C的解析式為,即。
(2)①∵拋物線由拋物線C繞原點(diǎn)O旋轉(zhuǎn)1800得到,
∴拋物線與拋物線C關(guān)于原點(diǎn)O對(duì)稱(chēng)!鄴佄锞的頂點(diǎn)坐標(biāo)為(3,9)。
∴拋物線的解析式為,即。
∵令y=0,得x=0或x=6,∴A(6,0)。
又∵B為拋物線上橫坐標(biāo)為2的點(diǎn),∴令x=2,得y=8!郆(2,8)。
設(shè)直線AB的解析式為y=kx+b,
則,解得:。
∴直線AB的解析式為。
∵P為線段AB上一動(dòng)點(diǎn),∴設(shè)P。
∴。
APD面積的最大值為9。
②如圖,分別過(guò)E2、F2作x軸的垂線,垂足分別為G、H,
易求直線OB:,由①直線AB:。
當(dāng)時(shí),E1在OB上,F(xiàn)1在AB上,
OE=t,EE1=4t,EG=,OG=,GE2=2t;
OF=,F(xiàn)F1=2t,HF=,OH=,HF2= t。
∴E(t,0),E1(t,4t),E2(,2t),F(xiàn)(6-t,0),F(xiàn)1(,2t),F(xiàn)2(,t)。
i)若EE1與FF1在同一直線上,由t=6-t,t=3,不符合;
ii)若EE2與F1F2在同一直線上,易求得EE2:,將F1(,2t)代入,得,解得;
iii)若E1E2與FF2在同一直線上,易求得E1E2:,將F(,0)代入,得。
當(dāng)時(shí),E1、F1都在AB上,
OE=t,EE1=,EG=,OG=,GE2=;
OF=,F(xiàn)F1=2t,HF=,OH=,HF2= t。
∴E(t,0),E1(t,),E2(,),F(xiàn)(,0),F(xiàn)1(,2t),F(xiàn)2(,t)。
i)若EE1與FF1在同一直線上,由t=6-t,t=3;
ii)若EE2與F1F2在同一直線上,易求得EE2:,將F1(,2t)代入,得,解得,不符合;
iii)E1E2與FF2已在時(shí)在同一直線上,故當(dāng)時(shí)E1E2與FF2不可能在同一直線上。
當(dāng)時(shí),由上面討論的結(jié)果,△AE1E2的一邊與△AF1F2的某一邊不可能在同一直線上。
綜上所述,當(dāng)△AE1E2有一邊與△AF1F2的某一邊在同一直線上時(shí),或解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)圖象的頂點(diǎn)是(-1,2),且過(guò)點(diǎn)(0,).
(1)求二次函數(shù)的表達(dá)式,并在圖中畫(huà)出它的圖象;
(2)判斷點(diǎn)(2,)是否在該二次函數(shù)圖象上;并指出當(dāng)取何值時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與直線交于點(diǎn)A 、B,與y軸交于點(diǎn)C.
(1)求點(diǎn)A、B的坐標(biāo);
(2)若點(diǎn)P是直線x=1上一點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,要設(shè)計(jì)一個(gè)矩形的花壇,花壇長(zhǎng)60 m,寬40 m,有兩條縱向甬道和一條橫向甬道,橫向甬道的兩側(cè)有兩個(gè)半圓環(huán)形甬道,半圓環(huán)形甬道的內(nèi)半圓的半徑為10 m,橫向甬道的寬度是其它各甬道寬度的2倍.設(shè)橫向甬道的寬為2x m.(π的值取3)
(1)用含x的式子表示兩個(gè)半圓環(huán)形甬道的面積之和;
(2)當(dāng)所有甬道的面積之和比矩形面積的多36 m2時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點(diǎn),橋拱最高點(diǎn)C到AB的距離為9m,AB=36m,D,E為橋拱底部的兩點(diǎn),且DE∥AB,點(diǎn)E到直線AB的距離為7m,則DE的長(zhǎng)為 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.
(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
(2)求DE的長(zhǎng)?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過(guò)點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與y軸交于點(diǎn)C(0,-4),與x軸交于點(diǎn)A,B,且B點(diǎn)的坐標(biāo)為(2,0)
(1)求該拋物線的解析式;
(2)若點(diǎn)P是AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3)若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),且△OMD為等腰三角形,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5)。
(1)求直線BC與拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖象上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線經(jīng)過(guò)A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱(chēng)軸上,且以AO為邊的四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
(3)P是拋物線上第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P,M,A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com