如圖,在?ABCD中,點E在CD上,點C′在AD上,若把△BCE沿BE折疊,則點C與點C′重合.
(1)在圖①中,直接寫出兩對相等的線段;
(2)如圖②,若把△ABC′沿AD的方向平移AD的長度,使得點A與點D重合,點B與點C重合.求證:四邊形BCFC′是菱形.
分析:(1)由平行四邊形的性質知,AB=CD,AD=BC,由折疊的性質知,BC=BC′,CE=C′E.
(2)在圖①中,由平行四邊形的性質知,BC=AD,BC∥C'D,在圖①與圖②中依題意知△ABC'≌△DCF?AC'=DF?AC'+C'D=C'D+DF?AD=C'F,即得BC=C'F,易證明四邊形BCFC'為平行四邊形,由折疊的性質知BC=BC',由一組鄰邊相等的平行四邊形是菱形得,四邊形BCFC'為菱形.
解答:解:(1)寫出AB=CD,AD=BC,BC=BC′,EC=EC′,BC′=AD中的任意兩對相等的線段均可.

(2)∵四邊形ABCD是平行四邊形,
∴BC=AD,BC∥CD′,
由題意知:△ABC′≌△DCF,
∴AC′=DF,
∴AC′+C′D=C′D+DF,
∴AD=C′F,即BC=C′F,
∵BC∥C′F,
∴四邊形BCFC′為平行四邊形,
又∵由折疊的性質得:BC=BC′,
∴?BCFC′為菱形.
點評:本題考查了翻折變換和平行四邊形的判定與性質,注意掌握1、折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;2、平行四邊形的判定和性質,菱形的判定求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案