當(dāng)a>0,b>0時,化簡:數(shù)學(xué)公式=________.


分析:把所求式子的被開方數(shù)利用異分母分式的加法法則:先進(jìn)行通分化為同分母分式的加法,然后分母不變,只把分子相加,計(jì)算后利用二次根式的性質(zhì)=|a|化簡,根據(jù)a與b的正負(fù)即可得到化簡的結(jié)果.
解答:由a>0,b>0得到ab>0,
====
故答案為:
點(diǎn)評:此題考查了二次根式的性質(zhì)與化簡,以及異分母分式的加法運(yùn)算.利用二次根式化簡時注意a與b的正負(fù),通分時注意準(zhǔn)確找出各分母的最簡公分母.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:C為反比例函數(shù)y=
kx
(k≠0,x<0)
上一動點(diǎn),過點(diǎn)C作直線l⊥x軸于A點(diǎn),連接OC,過C點(diǎn)作CD⊥OC交曲線于點(diǎn)D(D在C右側(cè)),連接OD,過D點(diǎn)作DB∥x軸交直線l于B點(diǎn),S△AOC=4.
(1)求k的值;
(2)當(dāng)OA=4時,在直線l上是否存在異于C的點(diǎn)P,使△OPD為直角三角形?若存在,請求出P點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)把△BCD沿CD翻折,當(dāng)B點(diǎn)恰好落在OD上時,四邊形OCBD的面積是否隨著點(diǎn)C的運(yùn)動而發(fā)生變化?若不變,請求出其面積;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•臺州模擬)在□ABCD中,已知AB=5,BC=2
2
,∠A=45°,以AB所在直線為x軸,A為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,將□ABCD繞A點(diǎn)按逆時針方向旋轉(zhuǎn)90°得到□OEFG(圖1)
(1)直接寫出C﹑F兩點(diǎn)的坐標(biāo).
(2)沿x軸的負(fù)半軸以1米/秒的速度平行移動,設(shè)移動后x秒(圖2),□ABCD與□OEFG重疊部分的面積為y,當(dāng)點(diǎn)D移動到□OEFG的內(nèi)部時,求y與x之間的關(guān)系式.
(3)若□ABCD與□OEFG同時從O點(diǎn)出發(fā),分別沿x軸、y軸的負(fù)半軸以1米/秒的速度平行移動,設(shè)移動后x秒(如圖3),□ABCD與□OEFG重疊部分的面積為y,當(dāng)點(diǎn)D移動到□O'EFG的內(nèi)部時,求y與x之間的關(guān)系式,并求出重疊部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南通)已知x=2m+n+2和x=m+2n時,多項(xiàng)式x2+4x+6的值相等,且m-n+2≠0,則當(dāng)x=3(m+n+1)時,多項(xiàng)式x2+4x+6的值等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜興市一模)如圖1,正方形ABCD的邊長為a(a為常數(shù)),對角線AC、BD相交于點(diǎn)O,將正方形KPMN(KN>
1
2
AC)的頂點(diǎn)K與點(diǎn)O重合,若繞點(diǎn)K旋轉(zhuǎn)正方形KPMN,不難得出,兩個正方形重合部分的面積始終是正方形ABCD面積的四分之一.

(1)①在旋轉(zhuǎn)過程中,正方形ABCD的邊被正方形KPMN覆蓋部分總長度是定值嗎?如果是,請求出這個定值,如果不是,請說明理由.
②如圖2,若將上題中正方形ABCD改為正n邊形,正方形KPMN改為半徑足夠長的扇形,并將扇形的圓心繞點(diǎn)O旋轉(zhuǎn),設(shè)正n邊形的邊長為a,面積為S,當(dāng)扇形的圓心角為
360
n
360
n
°時,兩個圖形重合部分的面積是
s
n
,這時正n邊形的邊被扇形覆蓋部分的總長度為
a
a

(2)如圖3,在正方形KNMP旋轉(zhuǎn)過程中,記KP與AD的交點(diǎn)為E,KN與CD的交點(diǎn)為F.連接EF,令A(yù)E=x,S△OEF=S,當(dāng)正方形ABCD的邊長為2時,試寫出S關(guān)于x的函數(shù)關(guān)系式,并求出x為何值時S取最值,最值是多少.
(3)若將這兩張正方形按如圖4所示方式疊放,使K點(diǎn)與CD的中點(diǎn)E重合(AB≤
KM
2
),正方形ABCD以1cm/s的速度沿射線KM運(yùn)動,當(dāng)正方形ABCD完全進(jìn)入正方形KPMN時即停止運(yùn)動,正方形ABCD的邊長為8cm,且CD⊥KM,求兩正方形重疊部分面積y與運(yùn)動時間t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•市南區(qū)模擬)某乒乓球俱樂部有13塊訓(xùn)練場地對外出租,當(dāng)每塊場地每小時租金12元時,場地可全部租出;若每塊場地每小時租金提高2元,則會減少1塊場地租出;同時租出去的每塊場地每小時需要支付各種費(fèi)用2元.設(shè)每塊場地每小時租金提高x(元),乒乓球俱樂部每小時的利潤為y(元).
(1)當(dāng)每塊場地每小時租金提高6元時,問共能租出幾塊場地?
(2)求俱樂部每小時的利潤y(元)與x(元)的函數(shù)關(guān)系式;
(3)每塊場地每小時租金提高多少元時,乒乓球俱樂部每小時的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案