anb2[3bn-1-2abn+1+(-1)2003]=________.

3anbn+1-2an+1bn+3-anb2
分析:根據(jù)單項式成多項式,用單項式乘多向數(shù)的每一項,把所得的積相加,可得答案.
解答:原式=anb2(3bn-1-2abn+1-1)
=3anbn+1-2an+1bn+3-anb2,
故答案為:3anbn+1-2an+1bn+3-anb2
點評:本題考查了單項式成多項式,用單項式乘多向數(shù)的每一項,把所得的積相加.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

計算:
(1)(-3a2b32(-a3b25;
(2)-7x2y2•(-
3
14
x3y)•(-
2
3
xy4)
;
(3)(-3ab)(2a2b+ab-1);
(4)(6ab3+2ab2-3ab+1)(-2a2b);
(5)(x+y)(x2-2x-3);
(6)anb2[3bn-1-2abn+1+(-1)2003];
(7)-(-x)2(-2x2y)3+2x2(xy4-1);
(8)(3x-y)(y+3x)-(4x-3y)(4x+3y).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

計算:
(1)(-3a2b32(-a3b25;
(2)數(shù)學公式
(3)(-3ab)(2a2b+ab-1);
(4)(6ab3+2ab2-3ab+1)(-2a2b);
(5)(x+y)(x2-2x-3);
(6)anb2[3bn-1-2abn+1+(-1)2003];
(7)-(-x)2(-2x2y)3+2x2(xy4-1);
(8)(3x-y)(y+3x)-(4x-3y)(4x+3y).

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:計算題

計算:
(1)(-3a2b32(-a3b25;
(2)-7x2y2·(-x3y)·(-xy4);
(3)(-3ab)(2a2b+ab-1);
(4)(6ab3+2ab2-3ab+1)(-2a2b);
(5)(x+y)(x2-2x-3);
(6)anb2[3bn-1-2abn+1+(-1)2003];
(7)-(-x)2(-2x2y)3+2x2(xy4-1);
(8)(3x-y)(y+3x)-(4x-3y)(4x+3y)。

查看答案和解析>>

同步練習冊答案