已知拋物線y1=ax2+bx+c(a≠0)的頂點坐標(biāo)是(1,4),它與直線y2=x+1的一個交點的橫坐標(biāo)為2.
(1)求拋物線的解析式;
(2)在給出的坐標(biāo)系中畫出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫出使得y1≥y2的x的取值范圍;
(3)設(shè)拋物線與x軸的右邊交點為A,過點A作x軸的垂線,交直線y2=x+1于點B,點P在拋物線上,當(dāng)S△PAB≤6時,求點P的橫坐標(biāo)x的取值范圍.
考點:
二次函數(shù)綜合題.
分析:
(1)首先求出拋物線與直線的交點坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式;
(2)確定出拋物線與x軸的兩個交點坐標(biāo),依題意畫出函數(shù)的圖象.由圖象可以直觀地看出使得y1≥y2的x的取值范圍;
(3)首先求出點B的坐標(biāo)及線段AB的長度;設(shè)△PAB中,AB邊上的高為h,則由S△PAB≤6可以求出h的范圍,這是一個不等式,解不等式求出xP的取值范圍.
解答:
解:(1)∵拋物線與直線y2=x+1的一個交點的橫坐標(biāo)為2,
∴交點的縱坐標(biāo)為2+1=3,即交點坐標(biāo)為(2,3).
設(shè)拋物線的解析式為y1=a(x﹣1)2+4,把交點坐標(biāo)(2,3)代入得:
3=a(2﹣1)2+4,解得a=﹣1,
∴拋物線解析式為:y1=﹣(x﹣1)2+4=﹣x2+2x+3.
(2)令y1=0,即﹣x2+2x+3=0,解得x1=3,x2=﹣1,
∴拋物線與x軸交點坐標(biāo)為(3,0)和(﹣1,0).
在坐標(biāo)系中畫出拋物線與直線的圖形,如圖:
根據(jù)圖象,可知使得y1≥y2的x的取值范圍為﹣1≤x≤2.
(3)由(2)可知,點A坐標(biāo)為(3,0).
令x=3,則y2=x+1=3+1=4,∴B(3,4),即AB=4.
設(shè)△PAB中,AB邊上的高為h,則h=|xP﹣xA|=|xP﹣3|,
S△PAB=AB•h=×4×|xP﹣3|=2|xP﹣3|.
已知S△PAB≤6,2|xP﹣3|≤6,化簡得:|xP﹣3|≤3,
去掉絕對值符號,將不等式化為不等式組:﹣3≤xP﹣3≤3,
解此不等式組,得:0≤xP≤6,
∴當(dāng)S△PAB≤6時,點P的橫坐標(biāo)x的取值范圍為0≤xP≤6.
點評:
本題考查了二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、三角形的面積、解不等式(組)等知識點.題目難度不大,失分點在于第(3)問,點P在線段AB的左右兩側(cè)均有取值范圍,注意不要遺漏.
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
9 | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:044
(1)求證:拋物線與直線一定有兩個不同的交點;
(2)設(shè)A(x1,y1)、B(x2,y2)是拋物線與直線的兩個交點,點P是線段AB的中點,且點P的橫坐標(biāo)為,試用含a的代數(shù)式表示點P的縱坐標(biāo);
(3)設(shè)A,B兩點的距離d=·|x1-x2|,試用含a的代數(shù)式表示d.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2008年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com