已知拋物線y=-2x2+4x+6,用兩種方法確定它的頂點坐標(biāo).

解:方法一:由頂點坐標(biāo)公式,得(-,),即頂點坐標(biāo)為(1,8);
方法二:∵y=-2x2+4x+6=-2(x2-2x+1)+8=-2(x-1)2+8,
∴拋物線的頂點坐標(biāo)為(1,8).
分析:方法一:用頂點坐標(biāo)公式求解,拋物線y=ax2+bx+c的頂點坐標(biāo)為(-,);方法二:用配方法求頂點坐標(biāo).
點評:本題考查了拋物線的頂點坐標(biāo)與拋物線解析式的關(guān)系,拋物線的頂點式:y=a(x-h)2+k,頂點坐標(biāo)為(h,k).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-2x-8.
(1)試說明該拋物線與x軸一定有兩個交點.
(2)若該拋物線與x軸的兩個交點分別為A、B(A在B的左邊),且它的頂點為P,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-2x+a(a<0)與y軸相交于點A,頂點為M.直線y=
12
x-a分別與x軸,y軸相交于B,C兩點,并且與直線AM相交于點N.
(1)試用含a的代數(shù)式分別表示點M與N的坐標(biāo);
(2)如圖,將△NAC沿y軸翻折,若點N的對應(yīng)點N′恰好落在拋物線上,AN′與x軸交于點D,連接CD,求a的值和四邊形ADCN的面積;
(3)在拋物線y=x2-2x+a(a<0)上是否存在一點P,使得以P,A,C,N為頂點的四邊形是平行四邊形?若存在,求出P點的坐標(biāo);若不存在,試說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=2x2-4x+n與x軸交于不同的兩點A、B,其頂點是C,點D是拋物線的對稱軸與x軸精英家教網(wǎng)的交點.
(1)求實數(shù)n的取值范圍;
(2)求頂點C的坐標(biāo)和線段AB的長度(用含有m的式子表示);
(3)若直線y=
2
x+1
分別交x軸、y軸于點E、F,問△BDC與△EOF是否有可能全等?如果可能,請證明;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-2x-3與x軸交于A,B兩點,且A在B的左邊,頂點為C.
(1)求A,B,C各點的坐標(biāo),并畫出拋物線圖象的示意圖;
(2)根據(jù)圖象示意圖,請直接寫出:當(dāng)x取什么值時,①y>0;②y<0.
(3)若點P在拋物線上,且S△PAB=8,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=2x2+2x-12與x軸的交點是A,B,拋物線的頂點是C,則△ABC的面積是
125
4
125
4

查看答案和解析>>

同步練習(xí)冊答案