如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長分別是一元二次方程x2-14x+48=0的兩個實(shí)數(shù)根.
(1)求C點(diǎn)坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請直接寫出P點(diǎn)的坐標(biāo).

解:(1)解方程x2-14x+48=0得
x1=6,x2=8.
∵OA,OC(OA>OC)的長分別是一元二次方程x2-14x+48=0的兩個實(shí)數(shù)根,
∴OC=6,OA=8.
∴C(0,6);

(2)設(shè)直線MN的解析式是y=kx+b(k≠0).
由(1)知,OA=8,則A(8,0).
∵點(diǎn)A、C都在直線MN上,
,
解得,,
∴直線MN的解析式為y=-x+6;

(3)∵A(8,0),C(0,6),
∴根據(jù)題意知B(8,6).
∵點(diǎn)P在直線MNy=-x+6上,
∴設(shè)P(a,-a+6)
當(dāng)以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),需要分類討論:
①當(dāng)PC=PB時(shí),點(diǎn)P是線段BC的中垂線與直線MN的交點(diǎn),則P1(4,3);
②當(dāng)PC=BC時(shí),a2+(-a+6-6)2=64,
解得,a=,則P2(-),P3,);
③當(dāng)PB=BC時(shí),(a-8)2+(-a+6-6)2=64,
解得,a=,則-a+6=-,∴P4,-).
綜上所述,符合條件的點(diǎn)P有:P1(4,3),P2(-,)P3),P4,-).
分析:(1)通過解方程x2-14x+48=0可以求得OC=6,OA=8.則C(0,6);
(2)設(shè)直線MN的解析式是y=kx+b(k≠0).把點(diǎn)A、C的坐標(biāo)分別代入解析式,列出關(guān)于系數(shù)k、b的方程組,通過解方程組即可求得它們的值;
(3)需要分類討論:PB為腰,PB為底兩種情況下的點(diǎn)P的坐標(biāo).根據(jù)等腰三角形的性質(zhì)、兩點(diǎn)間的距離公式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征進(jìn)行解答.
點(diǎn)評:本題考查了一次函數(shù)綜合題.其中涉及到的知識點(diǎn)有:待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,等腰三角形的性質(zhì).解答(3)題時(shí),要分類討論,防止漏解.另外,解答(3)題時(shí),還利用了“數(shù)形結(jié)合”的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•綏化)如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長分別是一元二次方程x2-14x+48=0的兩個實(shí)數(shù)根.
(1)求C點(diǎn)坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實(shí)數(shù)根.

(1)求C點(diǎn)坐標(biāo);

(2)求直線MN的解析式;

(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧營口大石橋市九年級第一學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實(shí)數(shù)根.

(1)求C點(diǎn)坐標(biāo);

(2)求直線MN的解析式;

(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請直接寫出P點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江綏化卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實(shí)數(shù)根.

(1)求C點(diǎn)坐標(biāo);

(2)求直線MN的解析式;

(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請直接寫出P點(diǎn)的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊答案