如圖,將含30°角的直角三角板ABC(∠B=30°)繞其直角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)α解(0°<α<90°),得到Rt△ADE,AD與BC相交于點(diǎn)M,過點(diǎn)M作MN∥DE交AE于點(diǎn)N,連接NC.設(shè)BC=4,BM=x,△MNC的面積為S△MNC,△ABC的面積為S△ABC
(1)求證:△MNC是直角三角形;
(2)試求用x表示S△MNC的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點(diǎn)N為圓心,NC為半徑作⊙N,
①當(dāng)直線AD與⊙N相切時(shí),試探求S△MNC與S△ABC之間的關(guān)系;
②當(dāng)S△MNC=S△ABC時(shí),試判斷直線AD與⊙N的位置關(guān)系,并說明理由.

【答案】分析:(1)利用平行線的性質(zhì)和等量代換,易得△ABM∽△ACN,再由等量代換得到∠MCN=90°即可;
(2)由于△MNC是直角三角形,則有S△MNC=MN•CN,而MC=4-x,故利用相似三角形的對(duì)應(yīng)邊成比例用含x的代數(shù)式表示出CN,就可求得S△MNC的函數(shù)關(guān)系式.
(3)①當(dāng)直線AD與⊙N相切時(shí),利用AN=NC,確定出CN的值后,用2中的S△MNC的函數(shù)關(guān)系式,確定S△MNC與S△ABC之間的關(guān)系;②當(dāng)S△MNC=S△ABC時(shí),求得x的值,討論x取不同值時(shí)直線AD與⊙N的位置關(guān)系.
解答:解:(1)MN∥DE,∴,
又∵AD=AB,AE=AC,∴,
又∵∠BAM=∠CAN,∴△ABM∽△ACN,
∴∠B=∠NCA,∴∠NCA+∠ACB=∠B+∠ACB=90°,
∴∠MCN=90°.即△MNC是直角三角形.

(2)在Rt△ABC中,∠A=90°,∠B=30°,BC=4,
∴AC=2,AB=2,
∴△ABM∽△ACN,∴,
,
∴S△MNC=CM•CN=(4-x)•x=(4x-x2)(0<x<4).

(3)①直線AD與⊙N相切時(shí),則AN=NC,
∵△ABM∽△ACN,
,∴AM=MB.
∵∠B=30°∴∠α=30°,∠AMC=60°.
又∵∠ACB=90°-30°=60°
∴△AMC是等邊三角形,有AM=MC=BM=BC=2,即x=2.
S△MNC=(4x-x2)=,∵S△ABC=AB•AC=2,
∴S△MNC=S△ABC
②當(dāng)S△MNC=S△ABC時(shí)
∴S△MNC=(4x-x2)=解得x=1或x=3.
(i)當(dāng)x=1時(shí),
在Rt△MNC中,MC=4-x=3,∴MN==
,即AN>NC,
∴直線AD與⊙相離.
(ii)當(dāng)x=3時(shí),
同理可求出,NC=,MC=1,MN=2,AN=1
∴NC>AN
∴直線AD與⊙相交.
點(diǎn)評(píng):本題利用了平行線的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積公式,直角三角形的性質(zhì)求解,運(yùn)用了分類討論的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將含30°角的直角三角板ABC(∠B=30°)繞其直角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)α解(0°<α<90°),得到Rt△ADE,AD與BC相交于點(diǎn)M,過點(diǎn)M作MN∥DE交AE于點(diǎn)N,連接NC.設(shè)BC=4,BM=x,△MNC的面積為S△MN精英家教網(wǎng)C,△ABC的面積為S△ABC
(1)求證:△MNC是直角三角形;
(2)試求用x表示S△MNC的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點(diǎn)N為圓心,NC為半徑作⊙N,
①當(dāng)直線AD與⊙N相切時(shí),試探求S△MNC與S△ABC之間的關(guān)系;
②當(dāng)S△MNC=
14
S△ABC時(shí),試判斷直線AD與⊙N的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點(diǎn)D,過點(diǎn)D作DE∥A′B′精英家教網(wǎng)交CB′于點(diǎn)E,連接BE.易知,在旋轉(zhuǎn)過程中,△BDE為直角三角形.設(shè)BC=1,AD=x,△BDE的面積為S.
(1)當(dāng)α=30°時(shí),求x的值.
(2)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點(diǎn)E為圓心,BE為半徑作⊙E,當(dāng)S=
14
S△ABC
時(shí),判斷⊙E與A′C的位置關(guān)系,并求相應(yīng)的tanα值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點(diǎn)D,過點(diǎn)D作DE∥A′B′交CB′于點(diǎn)E,連接BE.易知,在旋轉(zhuǎn)過程中,△BDE為直角三角形.設(shè)BC=1,AD=x,△BDE的面積為S.
(1)當(dāng)α=30°時(shí),求x的值.
(2)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點(diǎn)E為圓心,BE為半徑作⊙E,當(dāng)S=數(shù)學(xué)公式時(shí),判斷⊙E與A′C的位置關(guān)系,并求相應(yīng)的tanα值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(19)(解析版) 題型:解答題

(2010•龍巖質(zhì)檢)如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點(diǎn)D,過點(diǎn)D作DE∥A′B′交CB′于點(diǎn)E,連接BE.易知,在旋轉(zhuǎn)過程中,△BDE為直角三角形.設(shè)BC=1,AD=x,△BDE的面積為S.
(1)當(dāng)α=30°時(shí),求x的值.
(2)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點(diǎn)E為圓心,BE為半徑作⊙E,當(dāng)S=時(shí),判斷⊙E與A′C的位置關(guān)系,并求相應(yīng)的tanα值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•龍巖質(zhì)檢)如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點(diǎn)D,過點(diǎn)D作DE∥A′B′交CB′于點(diǎn)E,連接BE.易知,在旋轉(zhuǎn)過程中,△BDE為直角三角形.設(shè)BC=1,AD=x,△BDE的面積為S.
(1)當(dāng)α=30°時(shí),求x的值.
(2)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點(diǎn)E為圓心,BE為半徑作⊙E,當(dāng)S=時(shí),判斷⊙E與A′C的位置關(guān)系,并求相應(yīng)的tanα值.

查看答案和解析>>

同步練習(xí)冊(cè)答案