【題目】如圖,直線AB:y=﹣x﹣b分別與x,y軸交于A(6,0)、B兩點,過點B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.
(1)求點B的坐標(biāo);
(2)求直線BC的解析式;
(3)直線EF:y=2x﹣k(k≠0)交AB于E,交BC于點F,交x軸于點D,是否存在這樣的直線EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,請說明理由.
【答案】
(1)
解:將點A(6,0)代入直線AB解析式可得:0=﹣6﹣b,
解得:b=﹣6,
∴直線AB 解析式為y=﹣x+6,
∴B點坐標(biāo)為:(0,6)
(2)
解:∵OB:OC=3:1,
∴OC=2,
∴點C的坐標(biāo)為(﹣2,0),
設(shè)BC的解析式是y=ax+c,代入得; ,
解得: ,
∴直線BC的解析式是:y=3x+6
(3)
解:過E、F分別作EM⊥x軸,F(xiàn)N⊥x軸,則∠EMD=∠FND=90°.
∵S△EBD=S△FBD,
∴DE=DF.
又∵∠NDF=∠EDM,
∴△NFD≌△EDM,
∴FN=ME,
聯(lián)立得 ,
解得:yE=﹣ k+4,
聯(lián)立 ,
解得:yF=﹣3k﹣12,
∵FN=﹣yF,ME=yE,
∴3k+12=﹣ k+4,
∴k=﹣2.4;
當(dāng)k=﹣2.4時,存在直線EF:y=2x+2.4,使得S△EBD=S△FBD.
【解析】(1)將點A(6,0)代入直線AB的解析式,可得b的值,繼而可得點B的坐標(biāo);(2)設(shè)BC的解析式是y=ax+c,根據(jù)B點的坐標(biāo),求出C點坐標(biāo),把B,C點的坐標(biāo)分別代入求出a和c的值即可;(3)過E、F分別作EM⊥x軸,F(xiàn)N⊥x軸,則∠EMD=∠FND=90°,有題目的條件證明△NFD≌△EDM,進(jìn)而得到FN=ME,聯(lián)立直線AB:y=﹣x﹣b和y=2x﹣k求出交點E和F的縱坐標(biāo),再利用等底等高的三角形面積相等即可求出k的值;
【考點精析】解答此題的關(guān)鍵在于理解一次函數(shù)的性質(zhì)的相關(guān)知識,掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減小,以及對一次函數(shù)的圖象和性質(zhì)的理解,了解一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中的頂點A、C分別在平面直角坐標(biāo)系的x軸、y軸上,且∠ACB=90°,AC=2,BC=1,當(dāng)點A從原點出發(fā)朝x軸的正方向運動,點C也隨之在y軸上運動,當(dāng)點C運動到原點時點A停止運動,連結(jié)OB.
(1)點A在原點時,求OB的長;
(2)當(dāng)OA=OC時,求OB的長;
(3)在整個運動過程中,OB是否存在最大值?若存在,請你求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把兩條中線互相垂直的三角形稱為“稱為中垂三角形”,例如圖1,圖2,圖3中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均稱為“中垂三角形”,設(shè)BC=a,AC=b,AB=c.
特例探索
(1)如圖1,當(dāng)∠ABE=45°,c=2時,a=_____________,b=_____________.
如圖2,當(dāng)∠ABE=30°,c=4時,a=_____________,b=_____________.
歸納證明
(2)請你觀察(1)中的計算結(jié)果,猜想a2,b2,c2三者之間的關(guān)系,用等式表示出來,并利用圖3證明你發(fā)現(xiàn)的關(guān)系式.
拓展應(yīng)用
(3)如圖4,在ABCD中,點E、F、G分別是AD,BC,CD的中點,BE⊥EG,AD=2,AB=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算正確的是( )
A. x3+x3=2x6 B. x6÷x2=x3 C. (-3x3)2=3x6 D. x3·x2=x5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點M(k﹣1,k+1)關(guān)于y軸的對稱點在第四象限內(nèi),則一次函數(shù)y=(k﹣1)x+k的圖象不經(jīng)過第象限.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=2,在△ABC內(nèi)作第一個內(nèi)接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內(nèi)作第二個內(nèi)接正方形HIKJ;再取線段KJ的中點Q,在△QHI內(nèi)作第三個內(nèi)接正方形…依次進(jìn)行下去,則第n個內(nèi)接正方形的邊長為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com