【題目】2016年里約奧運會,中國跳水隊贏得8個項目中的7塊金牌,優(yōu)秀成績的取得離不開艱辛的訓(xùn)練.某跳水運動員在進(jìn)行跳水訓(xùn)練時,身體(看成一點)在空中的運動路線是如圖所示的一條拋物線,已知跳板AB長為2米,跳板距水面CD的高BC為3米,訓(xùn)練時跳水曲線在離起跳點水平距離1米時達(dá)到距水面最大高度k米,現(xiàn)以CD為橫軸,CB為縱軸建立直角坐標(biāo)系.
(1)當(dāng)k=4時,求這條拋物線的解析式;
(2)當(dāng)k=4時,求運動員落水點與點C的距離;
(3)圖中CE= 米,CF= 米,若跳水運動員在區(qū)域EF內(nèi)(含點E,F(xiàn))入水時才能達(dá)到訓(xùn)練要求,求k的取值范圍.
【答案】
(1)解:如圖所示:
根據(jù)題意,可得拋物線頂點坐標(biāo)M(3,4),A(2,3)
設(shè)拋物線解析為:y=a(x﹣3)2+4,
則3=a(2﹣3)2+4,
解得:a=﹣1,
故拋物線解析式為:y=﹣(x﹣3)2+4
(2)解:由題意可得:當(dāng)y=0,則0=﹣(x﹣3)2+4,
解得:x1=1,x2=5,
故拋物線與x軸交點為:(5,0),
當(dāng)k=4時,求運動員落水點與點C的距離為5米
(3)解:根據(jù)題意,拋物線解析式為:y=a(x﹣3)2+k,
將點A(2,3)代入可得:a+k=3,即a=3﹣k
若跳水運動員在區(qū)域EF內(nèi)(含點E,F(xiàn))入水,
則當(dāng)x= 時,y= a+k≥0,即 (3﹣k)+k≥0,
解得:k≤ ,
當(dāng)x= 時,y= a+k≤0,即 (3﹣k)+k≤0,
解得:k≥ ,
故 ≤k≤
【解析】(1)根據(jù)拋物線頂點坐標(biāo)M(3,4),可設(shè)拋物線解析為:y=a(x﹣3)2+4,將點A(2,3)代入可得;(2)在(1)中函數(shù)解析式中令y=0,求出x即可;(3)若跳水運動員在區(qū)域EF內(nèi)(含點E,F(xiàn))入水達(dá)到訓(xùn)練要求,則在函數(shù)y=a(x﹣3)2+k中當(dāng)x= 米,y>0,當(dāng)x= 米時y<0,解不等式即可得.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)切圓⊙O與AB、BC、AC分別相切于點D、E、F,若 = ,如圖1,.
(1)判斷△ABC的形狀,并證明你的結(jié)論;
(2)設(shè)AE與DF相交于點M,如圖2,AF=2FC=4,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在求同一坐標(biāo)軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點P1(x1 , y1),P2(x2 , y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2= 他還利用圖2證明了線段P1P2的中點P(x,y)P的坐標(biāo)公式:x= ,y= .
(1)請你幫小明寫出中點坐標(biāo)公式的證明過程;
(2)①已知點M(2,﹣1),N(﹣3,5),則線段MN長度為;
②直接寫出以點A(2,2),B(﹣2,0),C(3,﹣1),D為頂點的平行四邊形頂點D的坐標(biāo):;
(3)如圖3,點P(2,n)在函數(shù)y= x(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請在OL、x軸上分別找出點E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑長為1,AB、AC是⊙O的兩條弦,且AB=AC,BO的延長線交AC于點D,聯(lián)結(jié)OA、OC.
(1)求證:△OAD∽△ABD;
(2)當(dāng)△OCD是直角三角形時,求B、C兩點的距離;
(3)記△AOB、△AOD、△COD 的面積分別為S1、S2、S3 , 如果S2是S1和S3的比例中項,求OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017威海)央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了名學(xué)生;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)圖2中“小說類”所在扇形的圓心角為度;
(4)若該校共有學(xué)生2500人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結(jié)論: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( )
A.①②③④
B.②③
C.①②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】形如半圓型的量角器直徑為4cm,放在如圖所示的平面直角坐標(biāo)系中(量角器的中心與坐標(biāo)原點O重合,零刻度線在x軸上),連接60°和120°刻度線的一個端點P、Q,線段PQ交y軸于點A,則點A的坐標(biāo)為( )
A.(﹣1, )
B.(0, )
C.( ,0)
D.(1, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com