如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.
(1)求證:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度數(shù).

【答案】分析:(1)先根據(jù)題意得出∠ABE=∠CDA,然后結(jié)合題意條件利用SAS可判斷三角形的全等;
(2)根據(jù)題意可分別求出∠AEC及∠ACE的度數(shù),在△AEC中利用三角形的內(nèi)角和定理即可得出答案.
解答:(1)證明:在梯形ABCD中,∵AD∥BC,AB=CD,
∴∠ABE=∠BAD,∠BAD=∠CDA,
∴∠ABE=∠CDA
在△ABE和△CDA中,,
∴△ABE≌△CDA.

(2)解:由(1)得:∠AEB=∠CAD,AE=AC,
∴∠AEB=∠ACE,
∵∠DAC=40°,
∴∠AEB=∠ACE=40°,
∴∠EAC=180°-40°-40°=100°.
點(diǎn)評:此題考查了梯形、全等三角形的判定及性質(zhì),解答本題的關(guān)鍵是根據(jù)梯形及題意條件得出一些線段之間的關(guān)系,注意所學(xué)知識的融會貫通.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案