【題目】如圖,AC是⊙O的直徑,AB是⊙O的一條弦,AP是⊙O的切線(xiàn).作BMAB并與AP交于點(diǎn) M,延長(zhǎng)MBAC于點(diǎn)E,交⊙O于點(diǎn)D,連接AD、BC

1)求證:ABBE;

2)若BE3,OC,求BC的長(zhǎng).

【答案】1)見(jiàn)解析;(24

【解析】

1)根據(jù)切線(xiàn)的性質(zhì)得出∠EAM90°,等腰三角形的性質(zhì)∠MAB=∠AMB,根據(jù)等角的余角相等得出∠BAE=∠AEB,即可證得ABBE;
2)根據(jù)題意得出∠ABC=90°,求出AC,AB的值,再利用勾股定理即可得到結(jié)論.

1)證明:∵AP是⊙O的切線(xiàn),
∴∠EAM90°
∴∠BAE+∠MAB90°,∠AEB+∠AMB90°
又∵ABBM
∴∠MAB=∠AMB,
∴∠BAE=∠AEB
ABBE;
2)∵AC是⊙O的直徑,
∴∠ABC90°,
RtABC中,AC2OC5ABBE3,
BC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC10cm,BDAC于點(diǎn)D,BD8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),同時(shí)直線(xiàn)PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中始終保持PQAC,直線(xiàn)PQAB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t5).線(xiàn)段CM的長(zhǎng)度記作y,線(xiàn)段BP的長(zhǎng)度記作yyy關(guān)于時(shí)間t的函數(shù)變化情況如圖所示.

1)由圖2可知,點(diǎn)M的運(yùn)動(dòng)速度是每秒  cm;當(dāng)t  秒時(shí),四邊形PQCM是平行四邊形?在圖2中反映這一情況的點(diǎn)是  (并寫(xiě)出此點(diǎn)的坐標(biāo));

2)設(shè)四邊形PQCM的面積為ycm2,求yt之間的函數(shù)關(guān)系式;

3)連接PC,是否存在某一時(shí)刻t,使點(diǎn)M在線(xiàn)段PC的垂直平分線(xiàn)上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,,EOB的中點(diǎn),連接CE并延長(zhǎng)到點(diǎn)F,使EF=CE.連接AF交⊙O于點(diǎn)D,連接BD,BF.

(1)求證:直線(xiàn)BF是⊙O的切線(xiàn);

(2)若OB=2,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某小組做用頻率估計(jì)概率“的實(shí)驗(yàn)時(shí),繪出的某一結(jié)果出現(xiàn)的頻率折線(xiàn)圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是(

A. 拋一枚硬幣,出現(xiàn)正面朝上

B. 從一個(gè)裝有2個(gè)紅球1個(gè)黑球的袋子中任取一球,取到的是黑球

C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃

D. 擲一枚均勻的正六面體骰子,出現(xiàn)3點(diǎn)朝上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O中,ABAC,∠ACB75°,BC1,則陰影部分的面積是( 。

A.1+πB.πC.πD.1+π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O中,ABAC,∠ACB75°,BC1,則陰影部分的面積是( 。

A.1+πB.πC.πD.1+π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)yx2與反比例函數(shù)y的圖象相交于點(diǎn)A(2, n) ,與x軸相交于點(diǎn)B

1)求k 的值以及點(diǎn) B 的坐標(biāo);

2)以AB為邊作菱形ABCD,使點(diǎn)Cx軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);

3)在y軸上是否存在點(diǎn)P,使PAPB的值最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn)

1)如圖①,為邊長(zhǎng)為的等邊三角形,邊上一點(diǎn)且平分的面積,則線(xiàn)段的長(zhǎng)度為_(kāi)___;

問(wèn)題探究

2)如圖②,,點(diǎn)上,點(diǎn)上,若平分的面積,且最短,請(qǐng)你畫(huà)出符合要求的線(xiàn)段,并求出此時(shí)的長(zhǎng)度.

問(wèn)題解決

3)如圖③,某公園的一塊空地由三條道路圍成,即線(xiàn)段,已知米,米,的圓心在邊上,現(xiàn)規(guī)劃在空地上種植草坪,并的中點(diǎn)修一條直路(點(diǎn) ).請(qǐng)問(wèn)是否存在,使得平分該空地的面積?若存在,請(qǐng)求出此時(shí)的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解學(xué)生陽(yáng)光體育運(yùn)動(dòng)的實(shí)施情況,隨機(jī)調(diào)查了40名學(xué)生一周的體育鍛煉時(shí)間,并繪制成了如下圖所示的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的數(shù)據(jù),該校40名同學(xué)一周參加體育鍛煉時(shí)間的眾數(shù)與中位數(shù)分別是(

A.8,9B.8,8C.98D.10,9

查看答案和解析>>

同步練習(xí)冊(cè)答案