(2002•宜昌)如圖,D、E、F分別是△ABC的三邊AB、AC、BC的中點(diǎn),BF=2,BD=3.求四邊形BDEF的周長(zhǎng).

【答案】分析:本題可以運(yùn)用三角形的中位線定理“三角形的中位線等于第三邊的一半”,根據(jù)各條線段的長(zhǎng)度關(guān)系進(jìn)行解答.
解答:解:∵D、E是AB、AC的中點(diǎn),
∴DE為中位線,即DE=BC,
∵F為BC中點(diǎn),
∴DE=BF=2,
同理BD=EF=3,
∴四邊形BDEF的周長(zhǎng)為10.
點(diǎn)評(píng):本題考查了三角形的中位線定理,比較簡(jiǎn)單,中位線是三角形中的一條重要線段,由于它的性質(zhì)與線段的中點(diǎn)及平行線緊密相連,因此,它在幾何圖形的計(jì)算及證明中有著廣泛的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•宜昌)如圖,扇形DEF的圓心角∠FDE=90°點(diǎn)D(d,0)在點(diǎn)E的左側(cè),d為大于0的實(shí)數(shù),直線y=x與交于點(diǎn)M,OM=2(O是坐標(biāo)原點(diǎn)),以直線DF為對(duì)稱軸的拋物線y=x2+px+q與x軸交于點(diǎn)E,
(1)求點(diǎn)E的坐標(biāo);
(2)拋物線y=x2+px+q與x軸的交點(diǎn)有可能都在原點(diǎn)的右側(cè)嗎?請(qǐng)說明理由;
(3)設(shè)拋物線y=x2+px+q的頂點(diǎn)到x軸的距離為h,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•宜昌)如圖,扇形DEF的圓心角∠FDE=90°點(diǎn)D(d,0)在點(diǎn)E的左側(cè),d為大于0的實(shí)數(shù),直線y=x與交于點(diǎn)M,OM=2(O是坐標(biāo)原點(diǎn)),以直線DF為對(duì)稱軸的拋物線y=x2+px+q與x軸交于點(diǎn)E,
(1)求點(diǎn)E的坐標(biāo);
(2)拋物線y=x2+px+q與x軸的交點(diǎn)有可能都在原點(diǎn)的右側(cè)嗎?請(qǐng)說明理由;
(3)設(shè)拋物線y=x2+px+q的頂點(diǎn)到x軸的距離為h,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•宜昌)如圖,AD為圓內(nèi)接三角形ABC的外角∠EAC的平分線,它與圓交于點(diǎn)D,F(xiàn)為BC上的點(diǎn).
(1)求證:BD=DC;
(2)請(qǐng)你再補(bǔ)充一個(gè)條件使直線DF一定經(jīng)過圓心,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•宜昌)如圖,⊙O的半徑是6,求⊙O的內(nèi)接正六邊形ABCDEF的一邊AB所對(duì)弧的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(05)(解析版) 題型:解答題

(2002•宜昌)如圖,李莊計(jì)劃在山坡上的A處修建一個(gè)抽水泵站,抽取山坡下水池中的水用于灌溉,已知A到水池C處的距離AC是50米,山坡的坡角∠ACB=15°,由于大氣壓的影響,此種抽水泵的實(shí)際吸水揚(yáng)程AB不能超過10米,否則無法抽取水池中的水,試問泵站能否建在A處?

查看答案和解析>>

同步練習(xí)冊(cè)答案