【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:

①A,B兩城相距300千米;

②乙車比甲車晚出發(fā)1小時,卻早到1小時;

③乙車出發(fā)后2.5小時追上甲車;

④當甲、乙兩車相距50千米時,t=

其中正確的結(jié)論有(

A.1個 B.2個 C.3個 D.4個

【答案】B.

【解析】

試題解析:由圖象可知A、B兩城市之間的距離為300km,甲行駛的時間為5小時,而乙是在甲出發(fā)1小時后出發(fā)的,且用時3小時,即比甲早到1小時,

∴①②都正確;

設(shè)甲車離開A城的距離y與t的關(guān)系式為y=kt,

把(5,300)代入可求得k=60,

∴y=60t,

設(shè)乙車離開A城的距離y與t的關(guān)系式為y=mt+n,

把(1,0)和(4,300)代入可得,解得

∴y=100t-100,

y=y可得:60t=100t-100,解得t=2.5,

即甲、乙兩直線的交點橫坐標為t=2.5,

此時乙出發(fā)時間為1.5小時,即乙車出發(fā)1.5小時后追上甲車,

∴③不正確;

令|y-y|=50,可得|60t-100t+100|=50,即|100-40t|=50,

當100-40t=50時,可解得t=,

當100-40t=-50時,可解得t=,

又當t=時,y=50,此時乙還沒出發(fā),

當t=時,乙到達B城,y=250;

綜上可知當t的值為或t=時,兩車相距50千米,

∴④不正確;

綜上可知正確的有①②共兩個,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個等腰三角形的一邊長為4cm另一邊長為8cm,則該等腰三角形的周長是( 。

A. 16cm B. 20cm C. 16cm20cm D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(m﹣3)x|m|﹣2﹣4=0是一元一次方程,則m=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖a是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖b的形狀拼成一個正方形.
(1)你認為圖b中的陰影部分的正方形的邊長等于多少?
(2)請用兩種不同的方法求圖b中陰影部分的面積. 方法1:(只列式,不化簡)
方法2:(只列式,不化簡)
(3)觀察圖b你能寫出下列三個代數(shù)式之間的等式關(guān)系嗎? 代數(shù)式:(m+n)2 , (m﹣n)2 , mn.
(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題: 若a+b=8,ab=5.求(a﹣b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三位數(shù),百位數(shù)字為x,十位數(shù)字比百位數(shù)字大2,個位數(shù)字比百位數(shù)字的2倍小3,用代數(shù)式表示這個三位數(shù)為(  )

A. xx+2)(2x3 B. 100x+10x2)+2x3 C. 100x+10x+2)+2x3 D. 100x+10x2)+2x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+4x﹣2k=0有兩個實數(shù)根,則實數(shù)k的取值范圍是(
A.k≥﹣2
B.k≤﹣2
C.k>﹣2
D.k=﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盒中有4枚黑棋和2枚白棋,這些棋除顏色外無其他差別,在看不到盒中棋子顏色的前提下,從盒中隨機摸出3枚棋,下列事件是不可能事件的是( 。

A. 摸出的3枚棋中至少有1枚黑棋B. 摸出的3枚棋中有2枚白棋

C. 摸出的3枚棋都是黑棋D. 摸出的3枚棋都是白棋

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蘋果生產(chǎn)基地,用30名工人進行采摘或加工蘋果 ,每名工人只能做其中一項工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元;加工成罐頭出售每噸獲利10 000元.采摘的工人每人可采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設(shè)有x名工人進行蘋果采摘,全部售出后,總利潤為y元.

(1)yx的函數(shù)關(guān)系式;

(2)如何分配工人才能獲利最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系
(1)已知AB平行于CD,如a圖,當點P在AB、CD外部時,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,為什么?請說明理由.如b圖,將點P移動到AB、CD內(nèi)部,以上結(jié)論是否仍然成立?若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請說明結(jié)論;
(2)在圖b中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明)
(3)根據(jù)(2)的結(jié)論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案