【題目】A、B兩地之間的路程為2380米,甲、乙兩人分別從A、B兩地出發(fā),相向而行,已知甲先出發(fā)5分鐘后,乙才出發(fā),他們兩人在A、B之間的C地相遇,相遇后,甲立即返回A地,乙繼續(xù)向A地前行.甲到達(dá)A地時停止行走,乙到達(dá)A地時也停止行走,在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示,則乙到達(dá)A地時,甲與A地相距的路程是米.

【答案】180
【解析】解:由題意可得, 甲的速度為:(2380﹣2080)÷5=60米/分,
乙的速度為:(2080﹣910)÷(14﹣5)﹣60=70米/分,
則乙從B到A地用的時間為:2380÷70=34分鐘,
他們相遇的時間為:2080÷(60+70)=16分鐘,
∴甲從開始到停止用的時間為:(16+5)×2=42分鐘,
∴乙到達(dá)A地時,甲與A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,
所以答案是:180.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.
(1)求該二次函數(shù)的對稱軸方程;
(2)過動點C(0,n)作直線l⊥y軸. ①當(dāng)直線l與拋物線只有一個公共點時,求n與m的函數(shù)關(guān)系;
②若拋物線與x軸有兩個交點,將拋物線在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象.當(dāng)n=7時,直線l與新的圖象恰好有三個公共點,求此時m的值;
(3)若對于每一個給定的x的值,它所對應(yīng)的函數(shù)值都不小于1,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一張對邊互相平行的紙條,折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論正確的有( )

(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,AB=AC,C=70°,AB′C′ABC 關(guān)于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)a使關(guān)于x的分式方程 + =4的解為正數(shù),且使關(guān)于y的不等式組 的解集為y<﹣2,則符合條件的所有整數(shù)a的和為(
A.10
B.12
C.14
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索與發(fā)現(xiàn):

(1)若直線a1a2,a2a3,則直線a1a3的位置關(guān)系是__________,請說明理由.

(2)若直線a1a2,a2a3,a3a4,則直線a1a4的位置關(guān)系是________(直接填結(jié)論,不需要證明)

(3)現(xiàn)在有2 011條直線a1,a2a3,,a2 011,且有a1a2,a2a3,a3a4,a4a5,請你探索直線a1a2 011的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ABM=45°,AM⊥BM,垂足為M,點C是BM延長線上一點,連接AC.
(1)如圖1,若AB=3 ,BC=5,求AC的長;
(2)如圖2,點D是線段AM上一點,MD=MC,點E是△ABC外一點,EC=AC,連接ED并延長交BC于點F,且點F是線段BC的中點,求證:∠BDF=∠CEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地之間有一條筆直的公路,小明從甲地出發(fā)沿公路步行前往乙地,同時小亮從乙地出發(fā)沿公路騎車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為(m),小亮與甲地的距離為(m),小明與小亮之間的距離為(m),小明行走的時間為(min).之間的函數(shù)圖象如圖①,之間的函數(shù)圖象(部分)如圖②.

(1)求小亮從乙地到甲地過程中(m)(min)之間的函數(shù)表達(dá)式;

(2)求小亮從甲地返回到與小明相遇的過程中(m)( min)之間的函數(shù)表達(dá)式;

(3)在圖②中,補(bǔ)全整個過程中(m)(min)之間的函數(shù)圖象,并確定的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南水北調(diào)工程中線自201412月正式通水以來,沿線多座大中城市受益,河南、河北、北京及天津四個。ㄊ校┑乃Y源緊張態(tài)勢得到緩解,有效促進(jìn)了地下水資源的涵養(yǎng)和恢復(fù).若與上年同期相比,北京地下水的水位下降記為負(fù),回升記為正,記錄從2013年底以來,北京地下水水位的變化得到下表:

時間

2013年底

2014年底

2015年底

2016年底

2017年底

20189月底

地下水位與上年同比變化量(單位:

-0.25

-1.14

-0.09

+0.52

+0.26

+2.12

以下關(guān)于2013年以來北京地下水水位的說法不正確的是(

A. 2014年底開始,北京地下水水位的下降趨勢得到緩解

B. 2015年底到2016年底,北京地下水水位首次回升

C. 2013年以來,每年年底的地下水位與上年同比的回升量最大的是2018

D. 20189月底的地下水位低于2012年底的地下水水位

查看答案和解析>>

同步練習(xí)冊答案