【題目】如圖,在直角坐標(biāo)系中,先描出點,點.
(1)描出點關(guān)于軸的對稱點的位置,寫出的坐標(biāo) ;
(2)用尺規(guī)在軸上找一點,使的值最小(保留作圖痕跡);
(3)用尺規(guī)在軸上找一點,使(保留作圖痕跡).
【答案】(1)(1,-3) (2)答案詳見解析 (3)答案詳見解析
【解析】
(1)點關(guān)于x軸對稱,橫坐標(biāo)不變,縱坐標(biāo)變?yōu)橄喾磾?shù);
(2)若要使的值最小,根據(jù)兩點之間線段最短原理,可知只需要連接即可,與x軸的交點,即為點C.
(3)若使,只需要作出直線AB的垂直平分線即可.
(1)點關(guān)于x軸對稱,橫坐標(biāo)不變,縱坐標(biāo)變?yōu)橄喾磾?shù),因為,故A關(guān)于x軸的對稱點為,
(2)根據(jù)題意,若要使的值最小,根據(jù)兩點之間線段最短原理,可知只需要連接即可,與x軸的交點,即為點C,具體作圖如下:
(3)若使,只需要作出直線AB的垂直平分線即可.具體作圖如下:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰直角三角板ABC的直角頂點C放在直線l上,從另兩個頂點A、B分別作l的垂線,垂足分別為D、E.
(1)找出圖中的全等三角形,并加以證明;
(2)若DE=a,求直角梯形DABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李克強總理說:”一個國家養(yǎng)成全民閱讀習(xí)慣非常重要…我希望全民閱讀能夠形成一種氛圍,無處不在.“為了響應(yīng)國家的號召,某”希望“學(xué)校的全體師生掀起了閱讀的熱潮.下面是該校三個年級的學(xué)生人數(shù)分布扇形統(tǒng)計圖與學(xué)生在4月份閱讀課外書籍人次的統(tǒng)計圖表,其中七年級的學(xué)生人數(shù)為240人.請解答下列問題:
圖書種類 | 頻數(shù) | 頻率 |
科普書籍 | A | B |
文學(xué) | 1200 | C |
漫畫叢書 | D | 0.35 |
其他 | 200 | 0.05 |
(1)該校七年級學(xué)生人數(shù)所在扇形的圓心角為______°,該校的學(xué)生總?cè)藬?shù)為______人;
(2)請補全條形統(tǒng)計圖;
(3)為了鼓勵學(xué)生讀書,學(xué)校決定在“五四”青年節(jié)舉行兩場讀書報告會.報告會的內(nèi)容從“科普書籍”“文學(xué)”“漫畫叢書”“其他”中任選兩個.用畫樹狀圖或列表的方法求兩場報告會的內(nèi)容恰好是“科普書籍”與“漫畫叢書”的概率.(“科普書籍”“文學(xué)”“漫畫叢書”“其他”,可以分別用K,W,M,Q來表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)補充完整:
如圖1,在正方形ABCD中,E、F分別為DC、BC邊上的點,且滿足∠EAF=45°,連結(jié)EF,試說明DE+BF=EF.
解:將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合.由旋轉(zhuǎn)可得AB=AD,GB=ED,∠1=∠2,∠ABG=∠D=90°.
∴∠ABG+∠ABF=90°+90°=180°.
∴點G、B、F在同一條直線上.
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°
∵∠1=∠2,
∴∠1+∠3=45°.
∴∠GAF=∠ .
又∵AG=AE,AF=AF.
∴△GAF≌ .
∵ =EF.
∴DE+BF=BG+BF=GF=EF.
(2)類比引申:
如圖2,在四邊形ABCD中,AB=AD,∠BAD=90°,點E、F分別在邊BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時,有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°,試猜想BD、DE、EC滿足的等量關(guān)系,并寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標(biāo),某初中學(xué)校了解學(xué)生的創(chuàng)新意識,組織了全校學(xué)生參加創(chuàng)新能力大賽,從中抽取了部分學(xué)生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.
(1)抽取學(xué)生的總?cè)藬?shù)是 人,扇形C的圓心角是 °;
(2)補全頻數(shù)直方圖;
(3)該校共有2200名學(xué)生,若成績在70分以下(不含70分)的學(xué)生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm,動點P從點A開始沿邊AB向B以1cm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BC向C以2cm/s的速度移動(不與點C重合).如果P,Q分別從A,B同時出發(fā),當(dāng)四邊形APQC的面積最小時,經(jīng)過的時間為( )
A. 1 s B. 2 s C. 3 s D. 4 s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,B的坐標(biāo)分別為(4,0),(3,2).
(1)畫出△AOB關(guān)于原點O對稱的圖形△COD;
(2)將△AOB繞點O按逆時針方向旋轉(zhuǎn)90°得到△EOF,畫出△EOF;
(3)點D的坐標(biāo)是 ,點F的坐標(biāo)是 ,此圖中線段BF和DF的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,本市新建一座圓形人工湖,為測量該湖的半徑,小杰和小麗沿湖邊選取A,B,C三根木柱,使得A,B之間的距離與A,C之間的距離相等,并測得BC長為120米,A到BC的距離為4米,請你幫他們求出該湖的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)和一次函數(shù)y=k2x+b的圖象交于點M(3,﹣)和點N(﹣1,2),則k1=_____,k2=____,一次函數(shù)的圖象交x軸于點_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com