分析:(1)根據(jù)旋轉(zhuǎn)前、后的圖形全等,可知△ABC≌△DEA,則AB=DE=2,AC=DA=4,由此求出點(diǎn)E的坐標(biāo);根據(jù)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等可知旋轉(zhuǎn)中心Q既在線段AD的垂直平分線上,又在線段BE的垂直平分線上,為此,作出線段AD與線段BE的垂直平分線,它們的交點(diǎn)即為Q;
(2)設(shè)直線AE的函數(shù)關(guān)系式為y=kx+b,將A、E兩點(diǎn)的坐標(biāo)代入,運(yùn)用待定系數(shù)法即可求出;
(3)①分兩種情況:(i)當(dāng)點(diǎn)F在AD之間時(shí),1<x≤3,重疊部分是△PTF,由S
△PTF=
TF•PT=
AT•PT,可求出S與x之間的函數(shù)關(guān)系式;(ii)當(dāng)點(diǎn)F在點(diǎn)D的右邊時(shí),3<x<5,重疊部分是梯形PTDH,由S
梯形PTDH=
(PT+HD)•TD,可求出S與x之間的函數(shù)關(guān)系式;
②分兩種情況:(i)1<x≤3;(ii)3<x<5,由①中所求的S與x之間的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì),結(jié)合自變量的取值范圍,即可求解;
③由于tan∠EAD=
,所以∠EAD≠45°,∠APT≠45°,∠APF≠90°,則∠EPF≠90°,當(dāng)△PEF為直角三角形時(shí),分兩種情況進(jìn)行討論:(i)當(dāng)△PFE以點(diǎn)E為直角頂點(diǎn)時(shí),作EF⊥AE交x軸于F,由△AED∽△EFD,根據(jù)相似三角形對(duì)應(yīng)邊的邊相等列出比例式,即可求解;(ii)當(dāng)△P′F′E以點(diǎn)F′為直角頂點(diǎn)時(shí),由△AED∽△EF′D,根據(jù)相似三角形對(duì)應(yīng)邊的邊相等列出比例式,即可求解.
解答:解:(1)∵Rt△ADE可由Rt△CAB旋轉(zhuǎn)而成,點(diǎn)B的對(duì)應(yīng)點(diǎn)是E,點(diǎn)A的對(duì)應(yīng)點(diǎn)是D,
∴△ADE≌△CAB,
∴AD=CA=4,DE=AB=2,
∴OD=OA+AD=1+4=5,
∴E點(diǎn)坐標(biāo)為(5,2).
連接BE,作出線段AD與線段BE的垂直平分線,它們的交點(diǎn)即為Q;
(2)設(shè)直線AE對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b,
∵A(1,0),E(5,2),
∴
,解得
,
∴直線AE對(duì)應(yīng)的函數(shù)關(guān)系式為y=
x-
;
(3)①分兩種情況:
(i)當(dāng)點(diǎn)F在AD之間時(shí),重疊部分是△PTF,如圖.
∵點(diǎn)P在AE:y=
x-
上,PT⊥x軸,點(diǎn)T的坐標(biāo)為(x,0),
∴PT=
x-
.
∵OT=x,OA=1,
∴AT=OT-OA=x-1,
∴TF=AT=x-1.
∵S
△PTF=
TF•PT=
AT•PT=
(x-1)•(
x-
)=
(x-1)
2,
∴S=
x
2-
x+
.
∵當(dāng)F與D重合時(shí),AT=
AD=2,
∴1<x≤3;
(ii)當(dāng)點(diǎn)F在點(diǎn)D的右邊時(shí),重疊部分是梯形PTDH.
∵∠DFH=∠DAE,∠FDH=∠ADE=90°,
∴△FDH∽△ADE,
∴
==,
∴HD=
DF=
[2(x-1)-4]=x-3,
∴S
梯形PTDH=
(PT+HD)•TD=
(
x-
+x-3)•(5-x)=-
x
2+
x-
,
當(dāng)T與D重合時(shí),點(diǎn)F的坐標(biāo)是(9,0),
∴3<x<5.
綜上所述,S=
| x2-x+ (0<x≤3) | -x2+x- (3<x<5) |
| |
;
②(i)當(dāng)1<x≤3時(shí),∵S=
(x-1)
2,
∴S隨x的增大而增大,
∴當(dāng)x=3時(shí),S有取大值,且最大值是S=
(3-1)
2=1;
(ii)當(dāng)3<x<5時(shí),∵S=-
x
2+
x-
=-
(x-
)
2+
,
∴當(dāng)x=
時(shí),S有最大值,且最大值是
;
綜上所述,當(dāng)x=
時(shí),S有最大值,且最大值是S=
;
③存在這樣的點(diǎn)T(
,0)和(
,0),能夠使得△PEF為直角三角形.
分兩種情況:
(i)當(dāng)△PFE以點(diǎn)E為直角頂點(diǎn)時(shí),如圖,作EF⊥AE交x軸于F.
∵△AED∽△EFD,
∴
==,
∴DF=
DE=1,
∴點(diǎn)F(6,0),
∴點(diǎn)T(
,0);
(ii)當(dāng)△P′F′E以點(diǎn)F′為直角頂點(diǎn)時(shí),如圖.
∵△AED∽△EF′D,
∴
=
=
,
∴DF′=
DE=1,
∴點(diǎn)F′(4,0),
∴點(diǎn)T(
,0).
綜上(i)、(ii)知,滿足條件的點(diǎn)T坐標(biāo)為(
,0)和(
,0).