【題目】如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙與軸交于、,與軸交于點,為⊙上不同于、的任意一點,連接、,過點分別作于,于.設(shè)點的橫坐標(biāo)為,.當(dāng)點在⊙上順時針從點運動到點的過程中,下列圖象中能表示與的函數(shù)關(guān)系的部分圖象是( )
A.B.C.D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為直線BD,CE的交點.
(1)如圖,將△ADE繞點A旋轉(zhuǎn),當(dāng)D在線段CE上時,連接BE,下列給出兩個結(jié)論:①BD=CD+AD;②BE2=2(AD2+AB2).其中正確的是 ,并給出證明.
(2)若AB=4,AD=2,把△ADE繞點A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時,求PB的長;
②旋轉(zhuǎn)過程中線段PB長的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于兩點,交軸于點,點的坐標(biāo)為,直線經(jīng)過點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點是直線上方拋物線上的一動點,求面積的最大值并求出此時點的坐標(biāo);
(3)過點的直線交直線于點,連接當(dāng)直線與直線的一個夾角等于的2倍時,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最。咳绻嬖,請求出點P的坐標(biāo),如果不存在,請說明理由;(3)設(shè)點M在拋物線的對稱軸上,當(dāng)△MAC是直角三角形時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交BD于點G,交AB于點F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)BD=6,AB=10時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點,.
(1)若,求的值;
(2)過點作與軸平行的直線,交拋物線于點,.當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=3動點P從點A出發(fā),沿AC以每秒4個單位長度的速度向終點C運動.過點P(不與點A、C重合)作EF⊥AC,交AB或BC于點E,交AD或DC于點F,以EF為邊向右作正方形EFGH設(shè)點P的運動時間為t秒.
(1)①AC= .②當(dāng)點F在AD上時,用含t的代數(shù)式直接表示線段PF的長 .
(2)當(dāng)點F與點D重合時,求t的值.
(3)設(shè)方形EFGH的周長為l,求l與t之間的函數(shù)關(guān)系式.
(4)直接寫出對角線AC所在的直線將正方形EFGH分成兩部分圖形的面積比為1:2時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt中,∠A=90°,AC=4,,將沿著斜邊BC翻折,點A落在點處,點D、E分別為邊AC、BC的中點,聯(lián)結(jié)DE并延長交所在直線于點F,聯(lián)結(jié),如果為直角三角形時,那么____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點,點.
(1)求直線的函數(shù)表達(dá)式;
(2)點是線段上的一點,當(dāng)時,求點的坐標(biāo);
(3)如圖2,在(2)的條件下,將線段繞點順時針旋轉(zhuǎn),點落在點處,連結(jié),求的面積,并直接寫出點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com