如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,
E是AB的中點(diǎn),連結(jié)CE并延長(zhǎng)交AD于F.
【小題1】求證:① △AEF≌△BEC;
② 四邊形BCFD是平行四邊形;
【小題2】如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.
【小題1】證明:① 在△ABC中,∠ACB=90°,∠CAB=30°,
∴ ∠ABC=60°.
在等邊△ABD中,∠BAD=60°,
∴ ∠BAD=∠ABC=60° .
∵ E為AB的中點(diǎn),
∴ AE=BE.
又∵ ∠AEF=∠BEC ,
∴ △AEF≌△BEC .
② 在△ABC中,∠ACB=90°,E為AB的中點(diǎn)
∴ CE=AB,BE=
AB,
∴ ∠BCE=∠EBC=60° .
又∵ △AEF≌△BEC,
∴ ∠AFE=∠BCE=60° .
又∵ ∠D=60°, ∴ ∠AFE=∠D=60° .
∴ FC∥BD
又∵ ∠BAD=∠ABC=60°,
∴ AD∥BC,即FD∥BC
∴ 四邊形BCFD是平行四邊形
【小題2】解:∵∠BAD=60°,∠CAB=30° ∴∠CAH=90°
在Rt△ABC中,∠CAB=30°,設(shè)BC =a
∴ AB=2BC=2a,∴ AD=AB=2a.
設(shè)AH =" x" ,則 HC=HD=AD-AH=2a-x.
在Rt△ABC中,AC2=(2a) 2-a2=3a2.
在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a-x) 2.
解得 x=a,即AH=
a.
∴ HC=2a-x=2a-a=
a
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com