(12分)已知拋物線(xiàn))與軸相交于點(diǎn),頂點(diǎn)為.直線(xiàn)分別與軸,軸相交于兩點(diǎn),并且與直線(xiàn)相交于點(diǎn).

(1)填空:試用含的代數(shù)式分別表示點(diǎn)的坐標(biāo),則;

(2)如圖,將沿軸翻折,若點(diǎn)的對(duì)應(yīng)點(diǎn)′恰好落在拋物線(xiàn)上,′與軸交于點(diǎn),連結(jié),求的值和四邊形的面積;

(3)在拋物線(xiàn))上是否存在一點(diǎn),使得以為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

 

【答案】

(1)(2)(3)存在,

【解析】

試題分析:(1).

(2)由題意得點(diǎn)與點(diǎn)′關(guān)于軸對(duì)稱(chēng),,

′的坐標(biāo)代入

(不合題意,舍去),.

,點(diǎn)軸的距離為3.

, 直線(xiàn)的解析式為,

它與軸的交點(diǎn)為點(diǎn)軸的距離為.

.

(3)當(dāng)點(diǎn)軸的左側(cè)時(shí),若是平行四邊形,則平行且等于

向上平移個(gè)單位得到,坐標(biāo)為,代入拋物線(xiàn)的解析式,

得:

(不舍題意,舍去),,

.

當(dāng)點(diǎn)軸的右側(cè)時(shí),若是平行四邊形,則互相平分,

   與關(guān)于原點(diǎn)對(duì)稱(chēng),,

點(diǎn)坐標(biāo)代入拋物線(xiàn)解析式得:

(不合題意,舍去),,

存在這樣的點(diǎn),能使得以為頂點(diǎn)的四邊形是平行四邊形.

考點(diǎn):圖形的對(duì)稱(chēng)和四邊形面積求法

點(diǎn)評(píng):此類(lèi)試題屬于難度較大的試題,其中,圖形的基本對(duì)稱(chēng)和平行四邊形的判定以及面積的求法

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線(xiàn)C的解析式為:y=x2-2kx+(
3
+k)k,k為實(shí)數(shù).
(1)求拋物線(xiàn)的頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸方程(用k表示);
(2)任意給定k的三個(gè)不同實(shí)數(shù)值,請(qǐng)寫(xiě)出三個(gè)對(duì)應(yīng)的頂點(diǎn)坐標(biāo);試說(shuō)明當(dāng)k變化時(shí),拋物線(xiàn)C的頂點(diǎn)在一條定直線(xiàn)L上,求出直線(xiàn)L的解析式并畫(huà)出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線(xiàn)L相切.設(shè)兩圓在x軸上的切點(diǎn)分別為A、B(OA<OB),試問(wèn):
OA
OB
是否為一定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由;
(4)已知一直線(xiàn)L1與拋物線(xiàn)C中任意一條都相截,且截得的線(xiàn)段長(zhǎng)都為6,求這條直線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)y=
3
4
x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn),A點(diǎn)的坐標(biāo)為(-1,0),過(guò)點(diǎn)C的直線(xiàn)y=
3
4t
x-3
與x軸交于點(diǎn)Q,點(diǎn)P是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P作PH垂直O(jiān)B于點(diǎn)H,若PB=5t,且0<t<1,存在使P,H,Q為頂點(diǎn)的三角形與三角形COQ相似的t的值有
2
-1;
7
32
;
25
32
2
-1;
7
32
;
25
32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省初中畢業(yè)生學(xué)業(yè)考試適應(yīng)性監(jiān)測(cè)考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2011•相城區(qū)一模)在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)y=-+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=
(1)求此拋物線(xiàn)的函數(shù)表達(dá)式;
(2)過(guò)H的直線(xiàn)與y軸相交于點(diǎn)P,過(guò)O,M兩點(diǎn)作直線(xiàn)PH的垂線(xiàn),垂足分別為E,F(xiàn),若=時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線(xiàn)沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線(xiàn)上的一動(dòng)點(diǎn),直線(xiàn)NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線(xiàn)上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG與△ADM相似?若存在,求出所有符合條件的直線(xiàn)QG的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市五月調(diào)考九年級(jí)數(shù)學(xué)試卷(解析版) 題型:解答題

(2011•相城區(qū)一模)在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)y=-+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=
(1)求此拋物線(xiàn)的函數(shù)表達(dá)式;
(2)過(guò)H的直線(xiàn)與y軸相交于點(diǎn)P,過(guò)O,M兩點(diǎn)作直線(xiàn)PH的垂線(xiàn),垂足分別為E,F(xiàn),若=時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線(xiàn)沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線(xiàn)上的一動(dòng)點(diǎn),直線(xiàn)NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線(xiàn)上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG與△ADM相似?若存在,求出所有符合條件的直線(xiàn)QG的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市教育科學(xué)研究院命制中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•相城區(qū)一模)在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)y=-+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=
(1)求此拋物線(xiàn)的函數(shù)表達(dá)式;
(2)過(guò)H的直線(xiàn)與y軸相交于點(diǎn)P,過(guò)O,M兩點(diǎn)作直線(xiàn)PH的垂線(xiàn),垂足分別為E,F(xiàn),若=時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線(xiàn)沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線(xiàn)上的一動(dòng)點(diǎn),直線(xiàn)NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線(xiàn)上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG與△ADM相似?若存在,求出所有符合條件的直線(xiàn)QG的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案