如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E、F分別是OA、OB的中點(diǎn).
(1)求證:△ADE≌△BCF;
(2)若AD=4cm,AB=8cm,求CF的長(zhǎng).

【答案】分析:(1)根據(jù)矩形的對(duì)邊相等、對(duì)角線相等且相互平分等性質(zhì)可證△ADE≌△BCF;
(2)要求CF的長(zhǎng),若CF在一直角三角形中,則可用勾股定理求解.由此需要添加輔助線,過(guò)點(diǎn)F作FG⊥CD于點(diǎn)G,則△DFG∽△DBC;由(1)的結(jié)論可得DF=3FB,則可算出FG、DG的值,進(jìn)而求得CF的長(zhǎng).
解答:(1)證明:∵四邊形ABCD為矩形
∴AD=BC,OA=OC,OB=OD,AC=BD,AD∥BC
∴OA=OB=OC,∠DAE=∠OCB(兩直線平行,內(nèi)錯(cuò)角相等)
∴∠OCB=∠OBC
∴∠DAE=∠CBF
又∵AE=OA,BF=OB
∴AE=BF
∴△ADE≌△BCF;

(2)解:過(guò)點(diǎn)F作FG⊥CD于點(diǎn)G,
∴∠DGF=90°
∵四邊形ABCD是矩形,
∴∠DCB=90°
∴∠DGF=∠DCB
又∵∠FDG=∠BDC
∴△DFG∽△DBC

由(1)可知F為OB的中點(diǎn),
所以DF=3FB,得

∴FG=3,DG=6
∴GC=DC-DG=8-6=2
在Rt△FGC中,cm.
(說(shuō)明:其他解法可參照給分,如延長(zhǎng)CF交AB于點(diǎn)H,利用△DFC∽△BFH計(jì)算.)
點(diǎn)評(píng):本題主要考查了矩形的性質(zhì)、全等三角形、相似三角形的判定以及用勾股定理解直角三角形等,較為復(fù)雜.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對(duì)角線AC和BD相交于點(diǎn)O,過(guò)點(diǎn)O的直線分別交AD和BC于點(diǎn)E、F,AB=2,BC=3,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的對(duì)角線BD經(jīng)過(guò)坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y=
kx
的圖象上,若點(diǎn)A的坐標(biāo)為(-2,-2),則k的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的一邊AD在x軸上,對(duì)角線AC、BD交于點(diǎn)E,過(guò)B點(diǎn)的雙曲線y=
kx
(x>0)
恰好經(jīng)過(guò)點(diǎn)E,AB=4,AD=2,則K的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•葫蘆島)如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,∠BOC=60°,AD=3,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DO以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng)到點(diǎn)O停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,y=S△POC,則y與x的函數(shù)關(guān)系大致為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD的對(duì)角線交于O點(diǎn),∠AOB=120°,AD=5cm,則AC=
10
10
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案