如圖,已知AB是⊙O的直徑,點E在⊙O上,過點E的直線EF與AB的延長線交于點F,AC⊥EF,垂足為C,AE平分∠FAC.
(1)求證:CF是⊙O的切線;
(2)∠F=30°時,求
S△OFE
S四邊形AOEC
的值.
(1)證明:連接OE,
∵AE平分∠FAC,
∴∠CAE=∠OAE,
又∵OA=OE,∠OEA=∠OAE,∠CAE=∠OEA,
∴OEAC,
∴∠OEF=∠ACF,
又∵AC⊥EF,
∴∠OEF=∠ACF=90°,
∴OE⊥CF,
又∵點E在⊙O上,
∴CF是⊙O的切線;

(2)∵∠OEF=90°,∠F=30°,
∴OF=2OE
又OA=OE,
∴AF=3OE,
又∵OEAC,
∴△OFE△AFC,
OE
AC
=
OF
AF
=
2
3

S△OFE
S△AFC
=
4
9
,
S△OFE
S四邊形AOEC
=
4
5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC為直徑的圓交AB于D,則AD的長為( 。
A.
9
5
B.
12
5
C.
16
5
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知△ABC是等腰三角形,∠C=90°,AC=BC=
2
,在BC上取一點O,以O(shè)為圓心,OC為半徑作半圓與AB相切于點E,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O和⊙O′相交于A、B兩點,過點A作⊙O′的切線交⊙O于點C,過點B作兩圓的割線分別交⊙O、⊙O′于E、F,EF與AC相交于點P.
(1)求證:PA•PE=PC•PF;
(2)求證:
PE2
PC2
=
PF
PB

(3)當⊙O與⊙O′為等圓時,且PC:CE:EP=3:4:5時,求△PEC與△FAP的面積的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,兩同心圓O,大圓的弦AB切小圓于點C,且AB=4,求圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線y=
3
3
x+
3
與x軸、y軸分別相交于A,B兩點,圓心P的坐標為(1,0),圓P與y軸相切于點O.若將圓P沿x軸向左移動,當圓P與該直線相交時,橫坐標為整數(shù)的點P的個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C為圓心,2.5cm為半徑的圓與AB的位置關(guān)系是( 。
A.相離B.相交C.相切D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點A、B、C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,B為線段AD上一點,△ABC和△BDE都是等邊三角形,連接CE并延長交AD的延長線于點F,△ABC的外接圓⊙O交CF于點M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若過點D作DGBE交EF于點G,過G作GHDE交DF于點H,則易知△DGH是等邊三角形.設(shè)等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3,試探究S1、S2、S3之間的等量關(guān)系,請直接寫出其結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案