【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BE=BC.連接CE并延長交AD于點F,連接AE,過B點作BGAE于點G,延長BGAD于點H.在下列結(jié)論中:

AH=DF; ②∠AEF=45°; ③S四邊形EFHG=SDEF+SAGH,

其中正確的結(jié)論有_____________________.(填正確的序號)

【答案】①②

【解析】BD是正方形ABCD的對角線,

∴∠ABE=ADE=CDE=45AB=BC,

BE=BC

AB=BE

BGAE,

BH是線段AE的垂直平分線,ABH=DBH=22.5,

RtABH,AHB=90ABH=67.5

∵∠AGH=90,

∴∠DAE=ABH=22.5

ADECDE中,

∴△ADECDE,

∴∠DAE=DCE=22.5

∴∠ABH=DCF,

RtABHRtDCF中, ,

RtABHRtDCF

AH=DF,CFD=AHB=67.5,

∵∠CFD=EAF+AEF

67.5=22.5+AEF,

∴∠AEF=45,故①②正確;

如圖,連接HE,

BHAE垂直平分線,

AG=EG

SAGH=SHEG,

AH=HE,

∴∠AHG=EHG=67.5

∴∠DHE=45,

∵∠ADE=45,

∴∠DEH=90,DHE=HDE=45,

EH=ED,

∴△DEH是等腰直角三角形,

EF不垂直DH,

FH≠FD,

SEFH≠SEFD,

S四邊形EFHG=SHEG+SEFH=SAHG+SEFH≠SDEF+SAGH,故錯誤,

正確的是①②.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC,設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F

1)探究:線段OEOF的數(shù)量關系并加以證明;

2)當點O運動到何處時,且ABC滿足什么條件時,四邊形AECF是正方形?

3)當點O在邊AC上運動時,四邊形BCFE   是菱形嗎?(填可能不可能

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點A,與軸交于點B,拋物線經(jīng)過原點和點C(4,0),頂點D在直線AB上。

(1)求這個拋物線的解析式;

(2)在拋物線的對稱軸上是否存在點P,使得以P、CD為頂點的三角形與△ACD相似。若存在,請求出點P的坐標;若不存在,請說明理由;

(3)點Q軸上方的拋物線上的一個動點,若,⊙M經(jīng)過點O,C,Q,求過C點且與⊙M相切的直線解析式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四座城市A,B,C,D分別位于一個邊長100km的大正方形的四個頂點,由于各城市之間的商業(yè)往來日益頻繁,于是政府決定修建公路網(wǎng)連接它們,根據(jù)實際,公路總長設計得越短越好,公開招標的信息發(fā)布后,一個又一個方案被提交上來,經(jīng)過初審后,擬從下面四個方案中選定一個再進一步認證,其中符合要求的方案是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtΔABC中,AB=AC=4,∠BAC=900.點E為AB的中點,以AE為對角線作正方形ADEF,連接CF并延長交BD于點G,則線段CG的長等于________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步豐富學生課余文化生活和營造朝氣蓬勃的校園文化氛圍,學校組織學生開展了各種文體活動、社團活動,現(xiàn)在開展的社團活動有音樂,體育,美術,攝影四類,每個同學必須且只能從中選擇參加一個社團,為了解學生參與社團活動的情況,學生會成員隨機調(diào)查了一部分學生所參加的社團類別并繪制了以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

社團活動條形統(tǒng)計圖 社團活動扇形統(tǒng)計圖

(1)本次一共調(diào)查了_____________________名同學;

(2)補全統(tǒng)計圖;在扇形統(tǒng)計圖中,“美術”所在扇形的圓心角的度數(shù)為_______________;

(3)小明和小亮都想報美術,攝影,體育社團,用畫樹狀圖或列表的方法,求他們恰好參加同一社團的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境

如圖,同學們用矩形紙片ABCD開展數(shù)學探究活動,其中AD=8,CD=6。

操作計算

(1)如圖(1),分別沿BE,DF剪去RtΔABE和RtΔCDF兩張紙片,如果剩余的紙片BEDF菱形,求AE的長;

圖(1) 圖(2) 圖(3)

操作探究

把矩形紙片ABCD沿對角線AC剪開,得到ΔABC和兩張紙片

(2)將兩張紙片如圖(2)擺放,點C和重合,點B,C,D在同一條直線上,連接,記的中點為M,連接BM,MD,發(fā)現(xiàn)ΔBMD是等腰三角形,請證明:

(3)如圖(3),將兩張紙片疊合在一起,然后將紙片繞點B順時針旋轉(zhuǎn)a(00<a<900),連接,探究并直接寫出線段的關系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一小長假,李軍與張明相約去寧波旅游,李軍從溫嶺北上沿海高速,同時張明從玉環(huán)蘆浦上沿海高速,溫嶺北與玉環(huán)蘆浦相距44千米,兩人約好在三門服務區(qū)集合,李軍由于離三門近,行駛了1.2小時先到達三門服務站等候張明,張明走了1.4小時到達三門服務站。在整個過程中,兩人均保持各自的速度勻速行駛,兩人相距的路程y千米與張明行駛的時間x小時的關系如圖所示,下列說法錯誤的是( )

A.李軍的速度是80千米/小時

B.張明的速度是100千米/小時

C.玉環(huán)蘆浦至三門服務站的路程是140千米

D.溫嶺北至三門服務站的路程是44千米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d

1如圖1,在平面直角坐標系xOy圖形G1為以O為圓心,2為半徑的圓直接寫出以下各點到圖形G1的距離跨度

A1,0的距離跨度______________

B-, 的距離跨度____________;

C-3,-2的距離跨度____________;

根據(jù)中的結(jié)果猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________

2如圖2,在平面直角坐標系xOy,圖形G2為以D-1,0為圓心2為半徑的圓,直線y=kx-1上存在到G2的距離跨度為2的點k的取值范圍

3如圖3,在平面直角坐標系xOy,射線OPy=xx≥0),E是以3為半徑的圓,且圓心Ex軸上運動,若射線OP上存在點到E的距離跨度為2,求出圓心E的橫坐標xE的取值范圍

查看答案和解析>>

同步練習冊答案