直角三角板ABC中,∠A=30°,BC=1.將其繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<120°且α≠90°),得到Rt△A′B′C,
(1)如圖,當(dāng)A′B′邊經(jīng)過點(diǎn)B時(shí),求旋轉(zhuǎn)角α的度數(shù);
(2)在三角板旋轉(zhuǎn)的過程中,邊A′C與AB所在直線交于點(diǎn)D,過點(diǎn) D作DE∥A′B′交CB′邊于點(diǎn)E,連接BE.
①當(dāng)0°<α<90°時(shí),設(shè)AD=x,BE=y,求y與x之間的函數(shù)解析式及定義域;
②當(dāng)時(shí),求AD的長(zhǎng).

【答案】分析:(1)由旋轉(zhuǎn)的性質(zhì)可得出∠α=∠B′CB=60°;
(2)①當(dāng)0°<α<90°時(shí),點(diǎn)D在AB邊上(如圖).根據(jù)平行線DE∥A'B'分線段成比例知、及由旋轉(zhuǎn)性質(zhì)可知,CA=CA',CB=CB',∠ACD=∠BCE由此證明△CAD∽△CBE;根據(jù)相似三角形的對(duì)應(yīng)邊成比例、直角三角形的性質(zhì)及∠A=30°求得(0<x<2);
②先求得△ABC的面積,再由△CAD∽△CBE,求得BE,分情況討論:當(dāng)點(diǎn)D在AB邊上時(shí),AD=x,BD=AB-AD=2-x;當(dāng)點(diǎn)D在AB的延長(zhǎng)線上時(shí),AD=x,BD=x-2.
解答:解:(1)在Rt△ABC中,∵∠A=30°,
∴∠ABC=60°.(1分)
由旋轉(zhuǎn)可知:B′C=BC,∠B′=∠ABC=60°,∠α=∠B′CB
∴△B′BC為等邊三角形.(2分)
∴∠α=∠B′CB=60°.(1分)

(2)①當(dāng)0°<α<90°時(shí),點(diǎn)D在AB邊上(如圖).
∵DE∥A'B',
.(1分)
由旋轉(zhuǎn)性質(zhì)可知,CA=CA',CB=CB',∠ACD=∠BCE.
,(1分)

∴△CAD∽△CBE;(1分)

∵∠A=30°
=.(1分)
(0<x<2)(2分)
②當(dāng)0°<α<90°時(shí),點(diǎn)D在AB邊上.
AD=x,BD=AB-AD=2-x,
∵DE∥A′B′,
,
由旋轉(zhuǎn)性質(zhì)可知,CA=CA',CB=CB',∠ACD=∠BCE.

,
∴△CAD∽△CBE,
∴∠EBC=∠A=30°,又∠CBA=60°,
∴∠DBE=90°.
此時(shí),
當(dāng)S=時(shí),
整理,得x2-2x+1=0.
解得x1=x2=1,即AD=1.(2分)
當(dāng)90°<α<120°時(shí),點(diǎn)D在AB的延長(zhǎng)線上(如圖).
仍設(shè)AD=x,則BD=x-2,∠DBE=90°,
當(dāng)S=時(shí),
整理,得x2-2x-1=0.
解得,(負(fù)值,舍去).
.(2分)
綜上所述:AD=1或
點(diǎn)評(píng):本題主要考查旋轉(zhuǎn)、全等三角形、解直角三角形、平行線分線段成比例等知識(shí).解決本題的關(guān)鍵是結(jié)合圖形,分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角三角板ABC中,∠A=30°,BC=3cm,將直角三角板繞頂點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°至△A1B1C的位置,沿CB向左平移使B1點(diǎn)落在△ABC的斜邊AB上,點(diǎn)B1平移到點(diǎn)B2,則點(diǎn)B由B?B1?B2運(yùn)動(dòng)的路程是(  )
A、(3π+3-
3
)cm
B、(3π-3+
3
)cm
C、(
3
2
π+3-
3
)cm
D、(
3
2
π-3+
3
)cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖直角三角板ABC中,∠A=30°,BC=3cm,將直角三角板ABC繞著直角頂點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°至△A1B1C1的位置,再沿CB向左平移使點(diǎn)B1落在△ABC的斜邊AB上,點(diǎn)A1平移到點(diǎn)A2的位置,則點(diǎn)A?A1?A2運(yùn)動(dòng)的路徑長(zhǎng)度是
 
cm.(結(jié)果用帶π和根號(hào)的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直角三角板ABC中,∠A=30°,BC=1.將其繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<120°且α≠90°),得到Rt△A′B′C,
(1)如圖,當(dāng)A′B′邊經(jīng)過點(diǎn)B時(shí),求旋轉(zhuǎn)角α的度數(shù);
(2)在三角板旋轉(zhuǎn)的過程中,邊A′C與AB所在直線交于點(diǎn)D,過點(diǎn) D作DE∥A′B′交CB′邊于點(diǎn)E,連接BE.
①當(dāng)0°<α<90°時(shí),設(shè)AD=x,BE=y,求y與x之間的函數(shù)解析式及定義域;
②當(dāng)S△BDE=
13
S△ABC
時(shí),求AD的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

含30°角的直角三角板ABC中,∠A=30°.將其繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C邊與AB所在直線交于點(diǎn)D,過點(diǎn) D作DE∥A'B'交CB'邊于點(diǎn)E,連接BE.
(1)如圖1,當(dāng)A'B'邊經(jīng)過點(diǎn)B時(shí),α=
60
60
°;
(2)在三角板旋轉(zhuǎn)的過程中,若∠CBD的度數(shù)是∠CBE度數(shù)的m倍,猜想m的值并證明你的結(jié)論;
(3)設(shè)BC=1,AD=x,△BDE的面積為S,以點(diǎn)E為圓心,EB為半徑作⊙E,當(dāng)S=
13
S△ABC
時(shí),求AD的長(zhǎng),并判斷此時(shí)直線A'C與⊙E的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個(gè)用足夠長(zhǎng)的細(xì)鐵絲制作的直角的頂點(diǎn)D放在直角三角板ABC的斜邊AB上,再將該直角繞點(diǎn)D旋轉(zhuǎn),并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點(diǎn).
問題探究:
(1)在旋轉(zhuǎn)過程中,
①如圖2,當(dāng)AD=BD時(shí),線段DP、DQ有何數(shù)量關(guān)系?并說明理由.
②如圖3,當(dāng)AD=2BD時(shí),線段DP、DQ有何數(shù)量關(guān)系?并說明理由.
③根據(jù)你對(duì)①、②的探究結(jié)果,試寫出當(dāng)AD=nBD時(shí),DP、DQ滿足的數(shù)量關(guān)系為
 
(直接寫出結(jié)論,不必證明)
(2)當(dāng)AD=BD時(shí),若AB=20,連接PQ,設(shè)△DPQ的面積為S,在旋轉(zhuǎn)過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案