能將式子a-
a2-1
有理化的因式是
 
分析:能和它相乘時組成平方差公式的式子,就是它的有理化因式.
解答:解:a-
a2-1
的有理化因式為a+
a2-1
點評:根據(jù)二次根式的乘除法法則進行分母有理化,分母有理化主要利用了平方差公式,所以一般分母的有理化因式是符合平方差公式的特點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

28、問題1:同學們已經(jīng)體會到靈活運用乘法公式給整式乘法及多項式的因式分解帶來的方便,快捷.相信通過下面材料的學習探究,會使你大開眼界并獲得成功的喜悅.
例:用簡便方法計算195×205.
解:195×205
=(200-5)(200+5)           ①
=2002-52                   ②
=39975
(1)例題求解過程中,第②步變形是利用
平方差公式
(填乘法公式的名稱).
(2)用簡便方法計算:9×11×101×10001(4分)
問題2:對于形如x2+2xa+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2xa-3a2,就不能直接運用公式了.
此時,我們可以在二次三項式x2+2xa-3a2中先加上一項a2,使它與x2+2xa的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2xa-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)
像這樣,先添一適當項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

20、閱讀下列材料,并解答相應(yīng)問題:
對于二次三項式x2+2ax+a2這樣的完全平方式,可以用公式法將它分解成(x+a)2的形式,但是對于二次三項式x2+2ax-3a2,就不能直接應(yīng)用完全平方公式了,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使其成為完全平方式,再減去a這項,使整個式子的值不變,于是有:
x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-(2a)2
=(x+2a+a)(x+a-2a)
=(x+3a)(x-a).
(1)像上面這樣把二次三項式分解因式的數(shù)學方法是.
配方法

(2)這種方法的關(guān)鍵是.
配成完全平方式

(3)用上述方法把m2-6m+8分解因式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對于形如x2+2x+1這樣的二次三項式,可以用公式法將它分解成(x+1)2的形式.但對于二次三項式x2+2x-3,就不能直接運用公式了.此時,我們可以在二次三項式x2+2x-3中先加上一項1,使它與x2+2x的和成為一個完全平方式,再減去1,整個式子的值不變,于是有:x2+2x-3=(x2+2x+1)-1-3=(x+1)2-22=(x+3)(x-1).
像這樣,先添一適當項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
請利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

能將式子a-
a2-1
有理化的因式是______.

查看答案和解析>>

同步練習冊答案