(2006•宜昌)如圖,AB=CD,AD、BC相交于點O,要使△ABO≌△DCO,應(yīng)添加的條件為    .(添加一個條件即可)
【答案】分析:探究性題型,根據(jù)題目現(xiàn)有的條件,探究第三個條件,判斷兩個三角形全等;現(xiàn)有條件是AB=CD,對頂角相等,可以圍繞AAS、ASA的判斷方法,尋找添加條件.∠A=∠D或∠B=∠C或AB∥CD或AD、BC互相平分等.
解答:解:∵∠A=∠D,∠AOB=∠COD,AB=CD
∴△ABO≌△DCO(AAS).
故填:∠A=∠D.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2006•宜昌)如圖,點O是坐標(biāo)原點,點A(n,0)是x軸上一動點(n<0).以AO為一邊作矩形AOBC,點C在第二象限,且OB=2OA.矩形AOBC繞點A逆時針旋轉(zhuǎn)90°得矩形AGDE.過點A的直線y=kx+m交y軸于點F,F(xiàn)B=FA.拋物線y=ax2+bx+c過點E、F、G且和直線AF交于點H,過點H作HM⊥x軸,垂足為點M.
(1)求k的值;
(2)點A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年天津市中考數(shù)學(xué)模擬試卷(3)(解析版) 題型:解答題

(2006•宜昌)如圖,點O是坐標(biāo)原點,點A(n,0)是x軸上一動點(n<0).以AO為一邊作矩形AOBC,點C在第二象限,且OB=2OA.矩形AOBC繞點A逆時針旋轉(zhuǎn)90°得矩形AGDE.過點A的直線y=kx+m交y軸于點F,F(xiàn)B=FA.拋物線y=ax2+bx+c過點E、F、G且和直線AF交于點H,過點H作HM⊥x軸,垂足為點M.
(1)求k的值;
(2)點A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省宜昌市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•宜昌)如圖,點O是坐標(biāo)原點,點A(n,0)是x軸上一動點(n<0).以AO為一邊作矩形AOBC,點C在第二象限,且OB=2OA.矩形AOBC繞點A逆時針旋轉(zhuǎn)90°得矩形AGDE.過點A的直線y=kx+m交y軸于點F,F(xiàn)B=FA.拋物線y=ax2+bx+c過點E、F、G且和直線AF交于點H,過點H作HM⊥x軸,垂足為點M.
(1)求k的值;
(2)點A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省宜昌市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•宜昌)如圖,點O是坐標(biāo)原點,點A(n,0)是x軸上一動點(n<0).以AO為一邊作矩形AOBC,點C在第二象限,且OB=2OA.矩形AOBC繞點A逆時針旋轉(zhuǎn)90°得矩形AGDE.過點A的直線y=kx+m交y軸于點F,F(xiàn)B=FA.拋物線y=ax2+bx+c過點E、F、G且和直線AF交于點H,過點H作HM⊥x軸,垂足為點M.
(1)求k的值;
(2)點A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省宜昌市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•宜昌)如圖,點O是△ABC的內(nèi)切圓的圓心,若∠BAC=80°,則∠BOC=( )

A.130°
B.100°
C.50°
D.65°

查看答案和解析>>

同步練習(xí)冊答案