圖3的梯形ABCD中,FCD的中點,AFAB,EBC邊上的一點,且AEBE.若ABmm為常數(shù)),則EF的長為__________.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB=AD=DC,AC⊥AB,延長CB至F,使BF=CD.
(1)求∠ABC的度數(shù);
(2)求證:△CAF為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在梯形ABCD中,AD∥BC,AD=a,BC=b,AB=c.
操作示例
如圖1,當∠B=∠A=90°,我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn),該剪拼方法就是先將△PEC繞點P逆時針旋轉(zhuǎn)180°到△PFD的位置,易知PE與PF在同一條直線上.又因為在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構(gòu)成的新圖形是一個四邊形,進而根據(jù)平行四邊形的判定方法,可以判斷出四邊形ABEF是一個平行四邊形,而且還是一個特殊的平行四邊形--矩形.
實踐探究
(1)矩形ABEF的面積是
 
;  (用含a,b,c的式子表示)
(2)類比圖2的剪拼方法,請在如圖3的梯形ABCD中畫出剪拼成一個平行四邊形的示意圖;
(3)在如圖4的多邊形ABCDG中,AG=CD,AG∥CD,按上面的剪切方法沿一條直線進行剪切,拼成一個平行四邊形,請畫出拼成的平行四邊形的示意圖.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在梯形ABCD中,AD∥BC,AD=a,BC=b,AB=c.
操作示例
如圖1,當∠B=∠A=90°,我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn),該剪拼方法就是先將△PEC繞點P逆時針旋轉(zhuǎn)180°到△PFD的位置,易知PE與PF在同一條直線上.又因為在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構(gòu)成的新圖形是一個四邊形,進而根據(jù)平行四邊形的判定方法,可以判斷出四邊形ABEF是一個平行四邊形,而且還是一個特殊的平行四邊形--矩形.
實踐探究
(1)矩形ABEF的面積是________; (用含a,b,c的式子表示)
(2)類比圖2的剪拼方法,請在如圖3的梯形ABCD中畫出剪拼成一個平行四邊形的示意圖;
(3)在如圖4的多邊形ABCDG中,AG=CD,AG∥CD,按上面的剪切方法沿一條直線進行剪切,拼成一個平行四邊形,請畫出拼成的平行四邊形的示意圖.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市宣武區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

在梯形ABCD中,AD∥BC,AD=a,BC=b,AB=c.
操作示例
如圖1,當∠B=∠A=90°,我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn),該剪拼方法就是先將△PEC繞點P逆時針旋轉(zhuǎn)180°到△PFD的位置,易知PE與PF在同一條直線上.又因為在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構(gòu)成的新圖形是一個四邊形,進而根據(jù)平行四邊形的判定方法,可以判斷出四邊形ABEF是一個平行四邊形,而且還是一個特殊的平行四邊形--矩形.
實踐探究
(1)矩形ABEF的面積是______;  (用含a,b,c的式子表示)
(2)類比圖2的剪拼方法,請在如圖3的梯形ABCD中畫出剪拼成一個平行四邊形的示意圖;
(3)在如圖4的多邊形ABCDG中,AG=CD,AG∥CD,按上面的剪切方法沿一條直線進行剪切,拼成一個平行四邊形,請畫出拼成的平行四邊形的示意圖.

查看答案和解析>>

同步練習冊答案