如圖,將直角梯形ABCD的一角沿對角線AC折疊,D點(diǎn)剛好落在∠ACB的平分線上,若梯形的一個底角為72°,則∠ACD的度數(shù)為( )

A.36°
B.54°
C.30°
D.45°
【答案】分析:由折疊的性質(zhì)可得,∠ACD=∠ACD',又CD'平分∠ACB,所以∠BCD'=∠ACD=∠ACD';又∠B=72°,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),可得∠BCD=108°-72°=108°,即可求得∠ACD的度數(shù).
解答:解:∵AB∥CD,∠B=72°,
∴∠BCD=180°-∠B=180°-72°=108°,
∵CD'平分∠ACB,
∴∠BCD'=∠ACD',
∵∠ACD=∠ACD'(折疊的性質(zhì)),
∴∠BCD'=∠ACD=∠ACD',
∴∠ACD=108°÷3=36°.
故選A.
點(diǎn)評:此題綜合利用了折疊的性質(zhì)、平行線的性質(zhì)和角平分線的定義,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將直角梯形ABCD置于直角坐標(biāo)系中,點(diǎn)A和點(diǎn)C分別在x軸和y軸的正半軸上,點(diǎn)D和坐標(biāo)原點(diǎn)O重合.已知:BC∥AD,BC=2,AD=AB=5,M(7,1),點(diǎn)P從點(diǎn)M出發(fā),以每秒2個單位長度的速度水平向左平移,同時點(diǎn)Q從點(diǎn)A沿AB精英家教網(wǎng)以每秒1個單位長度的速度向點(diǎn)B移動,設(shè)移動時間為t秒.
(1)直接寫出點(diǎn)Q和點(diǎn)P的坐標(biāo)(用t的代數(shù)式表示).
(2)以點(diǎn)P為圓心,t個單位長度為半徑畫圓.
①當(dāng)⊙P與直線AB第一次相切時,求出點(diǎn)P坐標(biāo),并判斷此時⊙P與x軸的位置關(guān)系,并說明理由.
②設(shè)⊙P與直線MP交于E、F(E左F右)兩點(diǎn),當(dāng)△QEF為直角三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時針旋轉(zhuǎn)90°至AE,連接DE,則△ADE的面積等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠ABC=90°,將直角梯形ABCD放置在平面直角坐標(biāo)系中.已知A(-2,0)、B(4,0)、D(0,3),反比例函數(shù)y=
kx
(x>0)的圖象經(jīng)過點(diǎn)C.
(1)求反比例函數(shù)的解析式.
(2)將直角梯形ABCD繞點(diǎn)B沿順時針方向旋轉(zhuǎn)90°,點(diǎn)A、C、D的對應(yīng)點(diǎn)分別為點(diǎn)A′、C′、D′,C′D′與反比例函數(shù)的圖象交于點(diǎn)E.
①求點(diǎn)D在旋轉(zhuǎn)過程中經(jīng)過的路徑長;
②連接CE、OC、OE,求△OCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,將直角梯形ABCD置于直角坐標(biāo)系中,點(diǎn)A和點(diǎn)C分別在x軸和y軸的正半軸上,點(diǎn)D和坐標(biāo)原點(diǎn)O重合.已知:BC∥AD,BC=2,AD=AB=5,M(7,1),點(diǎn)P從點(diǎn)M出發(fā),以每秒2個單位長度的速度水平向左平移,同時點(diǎn)Q從點(diǎn)A沿AB以每秒1個單位長度的速度向點(diǎn)B移動,設(shè)移動時間為t秒.
(1)直接寫出點(diǎn)Q和點(diǎn)P的坐標(biāo)(用t的代數(shù)式表示).
(2)以點(diǎn)P為圓心,t個單位長度為半徑畫圓.
①當(dāng)⊙P與直線AB第一次相切時,求出點(diǎn)P坐標(biāo),并判斷此時⊙P與x軸的位置關(guān)系,并說明理由.
②設(shè)⊙P與直線MP交于E、F(E左F右)兩點(diǎn),當(dāng)△QEF為直角三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省泰州市泰興市濟(jì)川實(shí)驗(yàn)初中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,將直角梯形ABCD置于直角坐標(biāo)系中,點(diǎn)A和點(diǎn)C分別在x軸和y軸的正半軸上,點(diǎn)D和坐標(biāo)原點(diǎn)O重合.已知:BC∥AD,BC=2,AD=AB=5,M(7,1),點(diǎn)P從點(diǎn)M出發(fā),以每秒2個單位長度的速度水平向左平移,同時點(diǎn)Q從點(diǎn)A沿AB以每秒1個單位長度的速度向點(diǎn)B移動,設(shè)移動時間為t秒.
(1)直接寫出點(diǎn)Q和點(diǎn)P的坐標(biāo)(用t的代數(shù)式表示).
(2)以點(diǎn)P為圓心,t個單位長度為半徑畫圓.
①當(dāng)⊙P與直線AB第一次相切時,求出點(diǎn)P坐標(biāo),并判斷此時⊙P與x軸的位置關(guān)系,并說明理由.
②設(shè)⊙P與直線MP交于E、F(E左F右)兩點(diǎn),當(dāng)△QEF為直角三角形時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案