圖1,兩個等邊△ABD,△CBD的邊長均為1,將△ABD沿AC方向向右平移到△的位置,得到圖2,則陰影部分的周長為________.

答案:2
解析:

  分析:根據(jù)兩個等邊△ABD,△CBD的邊長均為1,將△ABD沿AC方向向右平移到△的位置,得出線段之間的相等關(guān)系,進而得出OM+MN+NR+GR+EG+OE=+CD=1+1=2,即可得出答案.

  解答:解:∵兩個等邊△ABD,△CBD的邊長均為1,將△ABD沿AC方向向右平移到△的位置,

  ∴M=N=MN,MO=DM=DO,=OE,EG=EC=GC,=RG=,

  ∴OM+MN+NR+GR+EG+OE=+CD=1+1=2;

  點評:此題主要考查了平移的性質(zhì)以及等邊三角形的性質(zhì),根據(jù)題意得出M=N=MN,MO=DM=DO,E=OE,EG=EC=GC,G=RG=R是解決問題的關(guān)鍵.


提示:

平移的性質(zhì);等邊三角形的性質(zhì).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

圖1是邊長分別為4
3
和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3);
探究:設(shè)△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設(shè)∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、將兩個等邊△ABC和△DEF(DE>AB)如圖所示擺放,點D是BC上的一點(除B、C點外).把△DEF繞頂點D順時針旋轉(zhuǎn)一定的角度,使得邊DE、DF與△ABC的邊(除BC邊外)分別相交于點M、N.
(1)∠BMD和∠CDN相等嗎?
(2)畫出使∠BMD和∠CDN相等的所有情況的圖形;
(3)在(2)題中任選一種圖形說明∠BMD和∠CDN相等的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知線段AB=8,點C是AB上的一動點(不包括A、B),在AB同側(cè)作兩個等邊三角形ACD和BCE,連DE,點P、F分別是DE和BE的中點,連接AF,分別交DC、CE于G、H.
(1)寫出圖中所有的相似三角形(除等邊三角形ACD和BCE外);
(2)當(dāng)點C在AB中點時,如圖2,求CP的長及AG:GH:HF;
(3)點M、N是線段AB上兩點,且AM=BN=2,當(dāng)點C從點M向點N運動時,求點P所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點C是線段AB上的一個動點,△ADC和△CEB是在AB同側(cè)的兩個等邊三角形,DM,EN分別是△ADC和△CEB的高,點C在線段AB上沿著從點A向點B的方向移動(不與點A,B重合),連接DE,若AB=1,則四邊形DMNE面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1是邊長分別為4
3
和3的兩個等邊三角形紙片ABC和CDE疊放在一起.
(1)固定△ABC,將△CDE繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE、CE的延長線交AB于點F(圖2),線段BE與AD之間有怎樣的大小關(guān)系?證明你的結(jié)論;
(2)固定△CDE,將△ABC移動,使頂點C落在CE的中點G,邊BG交DE于點M,邊AG交DC于點N,求證:CN•EM=EG•CG;
(3)將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖4);探究:設(shè)△PQR移動時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案