如圖,等腰△ABC內(nèi)接于⊙O,BA=CA,弦CD平分∠ACB,交AB于點(diǎn)H,過(guò)點(diǎn)B作AD的平行線分別交AC,DC于點(diǎn)E,F(xiàn).
(1)求證:CF=BF;
(2)若BH=DH=1,求FH的值.

【答案】分析:(1)根據(jù)CD平分∠ACB,利用圓周角定理,求證BE∥AD,再根據(jù)等腰三角形的性質(zhì)和等量代換即可求證CF=BF.
(2)連接DB,根據(jù)BH=DH,求證∠FHB=2∠HBD,同理,∠HFB=2∠FCB,再求證△FBH∽△FDB,然后利用相似三角形對(duì)應(yīng)邊成比例即可求得FH的值.
解答:證明:(1)∵CD平分∠ACB,
∴∠ACD=∠BCD,
∵∠BCD=∠DAB,
∴∠ACD=∠DAB,
∴BE∥AD,
∴∠EBA=∠DAB,
∴∠ACD=∠ABE,
∵AB=AC,
∴∠ACB=∠ABC,
∴∠FCB=∠FBC,
∴CF=BF;

(2)連接DB,∵BH=DH,
∴∠HDB=∠HBD,
∴∠FHB=2∠HBD,
同理,∠HFB=2∠FCB,
∵∠ABD=∠ACD=∠DCB,
∴∠FHB=∠HFB,
∴FB=HB=1,
∵FB∥AD,
∴∠1=∠2,
∵DC平分∠ACB,
=,
∴∠1=∠3,
∴∠2=∠3,
∴△FBH∽△FDB,
=,
設(shè)FH=x,則FD=x+1,
=
解之得,x=
即FH=
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)相似三角形的判定與性質(zhì),等腰三角形的性質(zhì),平行線的性質(zhì),圓周角定理的理解和掌握,涉及到知識(shí)點(diǎn)較多,綜合性較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等腰△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長(zhǎng)線上,連接AD,交AB于點(diǎn)E,∠D=40°,∠B=25°.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑為5,求弦AB的長(zhǎng)(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等腰△ABC內(nèi)接于⊙O,BA=CA,弦CD平分∠ACB,交AB于點(diǎn)H,過(guò)點(diǎn)B作AD的平行線分別交AC,DC于點(diǎn)E,F(xiàn).
(1)求證:CF=BF;
(2)若BH=DH=1,求FH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖,等腰△ABC內(nèi)接于⊙O,∠B=∠ACB=30°,弦AD交BC于E,AE=2,ED=4,則⊙O的半徑為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,等腰△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長(zhǎng)線上,連接AD,交AB于點(diǎn)E,∠D=40°,∠B=25°.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑為5,求弦AB的長(zhǎng)(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年湖北省某縣十校聯(lián)考初三數(shù)學(xué)試卷(4月份)(解析版) 題型:解答題

如圖,等腰△ABC內(nèi)接于⊙O,BA=CA,弦CD平分∠ACB,交AB于點(diǎn)H,過(guò)點(diǎn)B作AD的平行線分別交AC,DC于點(diǎn)E,F(xiàn).
(1)求證:CF=BF;
(2)若BH=DH=1,求FH的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案