如圖①,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(0,4),點(diǎn)E(0,1),如圖②,將△AEO沿x軸向左平移得到△A′E′O′,連接A′B、BE′。
(1)設(shè)AA′=m(m >0),試用含m的式子表示,并求出使取得最小值時(shí)點(diǎn)E′的坐標(biāo);
(2)當(dāng)A′B+BE′取得最小值時(shí),求點(diǎn)E′的坐標(biāo)。
(1)①若0<m<2,如圖1,連接EE′,
∵點(diǎn)A(2,0),∴A′O=2-m。
在Rt△A′BO中,由,得
。
∵△A′E′O′是△AEO沿x軸向左平移得到的,
∴EE′∥AA′,且EE′=AA′!唷螧EE′=90°,EE′=m。
又∵點(diǎn)B(0,4),點(diǎn)E(0,1),∴BE=OB-OE=3。
∴在Rt△BE′E中,。
∴。
又∵,
∴當(dāng)m=1時(shí),取得最小值,最小值為27,此時(shí),點(diǎn)E′的坐標(biāo)是(1,1)。
又∵點(diǎn)B(0,4),點(diǎn)E(0,1),∴BE=OB-OE=3。
∴在Rt△BE′E中,。
∴。
又∵,
∴當(dāng)m≥2時(shí), 隨m的增大而增大,在m=2時(shí),最小值為29,小于27。
綜上所述,,取得最小值時(shí)點(diǎn)E′的坐標(biāo)為(1,1)。
【考點(diǎn)】平移問(wèn)題,相似三角形的判定和性質(zhì),平移的性質(zhì),勾股定理,二次函數(shù)最值,全等三角形的判定和性質(zhì),兩點(diǎn)之間線段最短的性質(zhì)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一次函數(shù)y=ax+b(a>0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y=(k≠0)在同一直角坐標(biāo)系中的圖象如圖所示,A點(diǎn)的坐標(biāo)為(﹣2,0),則下列結(jié)論中,正確的是( )
A.a>b>0 B.a>k>0 C.b=2a+k D.a=b+k
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在Rt△ABC中,∠A=90°,∠B=30°, AC=1,點(diǎn)O在BC上,以O(shè)為圓心作⊙O交BC于點(diǎn)M、N,⊙O與AB、AC相切,切點(diǎn)分別為D、E,則⊙O的半徑為 ;∠MND的度數(shù)為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
菱形ABCD中,∠ABC=450,點(diǎn)P是對(duì)角線BD上的任一點(diǎn),點(diǎn)P關(guān)于直線AB、AD、CD、BC的對(duì)稱點(diǎn)分別是點(diǎn)E、F、G、H, BE與DF相交于點(diǎn)M,DG與BH相交于點(diǎn)N,證明:四邊形BMDN是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ長(zhǎng)度的最小值叫做線段與線段的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點(diǎn).
(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是_____,
當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離(即線段AB的長(zhǎng))為_(kāi)_____
(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M.
①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長(zhǎng);
②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點(diǎn)的三角形與△AOD相似,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,對(duì)稱軸為的拋物線與軸相交于點(diǎn)、
(1).求拋物線的解析式,并求出頂點(diǎn)的坐標(biāo)
(2).連結(jié)AB,把AB所在的直線平移,使它經(jīng)過(guò)原點(diǎn)O,得到直線.點(diǎn)P是上一動(dòng)點(diǎn).設(shè)以點(diǎn)A、B、O、P為頂點(diǎn)的四邊形面積為S,點(diǎn)P的橫坐標(biāo)為,當(dāng)0<S≤18時(shí),求的取值范圍
(3).在(2)的條件下,當(dāng)取最大值時(shí),拋物線上是否存在點(diǎn),使△OP為直角三角形且OP為直角邊.若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,正六邊形的邊長(zhǎng)為π,半徑是1的⊙O從與AB相切于點(diǎn)D的位置出發(fā),在正六邊形外部按順時(shí)針?lè)较蜓卣呅螡L動(dòng),又回到與AB相切于點(diǎn)D的位置,則⊙O自轉(zhuǎn)了【 】
A.4周 B.5周 C.6周 D.7周
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知直線交坐標(biāo)軸于兩點(diǎn),以線段為邊向上作正方形
,過(guò)點(diǎn)的拋物線與直線另一個(gè)交點(diǎn)為.
(1)請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)若正方形以每秒個(gè)單位長(zhǎng)度的速度沿射線下滑,直至頂點(diǎn)落在軸上時(shí)停止.設(shè)正方形落在軸下方部分的面積為,求關(guān)于滑行時(shí)間的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)自變量的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C在上,CD⊥OA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時(shí),圖中陰影部分的面積為 ▲ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com