如圖,在正方形ABCD中,已知CE⊥DF于H.
(1)求證:△BCE≌△CDF;
(2)若AB=6,BE=2,求HF的長.
分析:(1)由正方形的性質(zhì)可得BC=CD,∠B=∠BCD=90°,利用直角三角形中兩個銳角互余以及垂直的定義證明∠BEC=∠CFD即可證明:△BCE≌△CDF;
(2)由(1)可知:△BCE≌△CDF,所以CF=BE=2,由相似三角形的判定方法可知:△BCE∽HCF,利用相似三角形的性質(zhì):對應邊的比值相等即可求出HF的長.
解答:(1)證明:∵四邊形ABCD是正方形,
∴BC=CD,∠B=∠BCD=90°,
∵CE⊥DF于H,
∴∠BCE+∠CFH=90°,
∵∠BCE+∠BEC=90°,
∴∠BEC=∠CFD,
在△BCE和△CDF中
∠B=∠BCD
∠BEC=∠CFD
BC=CD
,
∴△BCE≌△CDF(AAS);

(2)解:∵△BCE≌△CDF,
∴CF=BE=2,
∵∠B=∠CHF=90°,∠BCE=∠HCF,
∴△BCE∽△HCF,
BE
HF
=
CE
CF
,
∴HF=
BC•CF
CE
=
10
5
點評:本題考查了正方形的性質(zhì)、相似三角形的判定和性質(zhì)以及全等三角形的判定和性質(zhì),題目的綜合性很強,但難度不大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案