如圖1,AB為⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),∠BAC=30°,點(diǎn)D是AC邊上一點(diǎn),BC=DC,以DC為一邊作等邊三角形DCE.
(1)求證:BD=OE;
(2)將△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<60°)得到△D1CE1(如圖2),判斷BD1與OE1是否相等,并說(shuō)明理由.

(1)證明:∵AB是直徑,
∴∠ACB=90°,
∵OA=OB,∠A=30°,
∴OC=AB,BC=AB,
∴OC=BC,
∵∠A=30°,OA=OC,
∴∠A=∠OCA=30°,
∴∠OCB=90°-30°=60°,
∵△DCE是等邊三角形,
∴CD=CE,∠DCE=60°=∠OCB,
∴∠OCB+∠OCD=∠DCE+∠OCD,
即∠BCD=∠OCE=90°,
在△BCD和△OCE中

∴△BCD≌△OCE,
∴BD=CE.

(2)解:BD1與OE1相等,
理由是:∵△D1CE是等邊三角形,
∴CD1=CE1,∠D1CE1=60°=∠OCB,
∴∠OCB+∠OCD1=∠D1CE1+∠OCD1
即∠BCD1=∠OCE1,
在△BCD1和△OCE1

∴△BCD1≌△OCE1
∴BD1=OE1
分析:(1)求出BC=OC,CD=CE,∠BCD=∠OCE,證出△BCD≌△OCE即可;
(2)求出BC=OC,CD1=CE1,∠BCD1=∠OCE1,證出△BCD1≌△OCE1即可.
點(diǎn)評(píng):本題考查了圓周角定理,等腰三角形性質(zhì),直徑三角形斜邊上中線性質(zhì),全等三角形性質(zhì)和判定,等邊三角形性質(zhì)的應(yīng)用,關(guān)鍵是能推出△BCD≌△OCE,△BCD1≌△OCE1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新余模擬)如圖,直徑AB為12的半圓,繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,此時(shí)點(diǎn)B到了點(diǎn)B′,則圖中陰影部分的面積是
18π
18π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)如圖,以AB為直徑的半圓O交AC于點(diǎn)D,且點(diǎn)D為AC的中點(diǎn),DE⊥BC于點(diǎn)E,AE交半圓O于點(diǎn)F,BF的延長(zhǎng)線交DE于點(diǎn)G.
(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=
32
,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1在△ABC中,D為AB上一點(diǎn),DE∥BC交AC于點(diǎn)E,若AD:DB=2:3,BC=10,求DE的長(zhǎng).
(2)如圖2,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)M,連接AC.若∠B=30°,AB=2,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶安區(qū)二模)已知:如圖1,AB為⊙O的直徑,M是
BC
的中點(diǎn),AM交BC于D,MD=1,DA=2.
(1)求證:△MBD∽△MAB;
(2)求∠A的度數(shù);
(3)延長(zhǎng)AB到E,使BE=BO,連接ME、MC,如圖2,試證明四邊形MCBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以AB為直徑的⊙O與AD、DC、BC均相切,若AB=BC=4,則OD的長(zhǎng)度為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案