對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
∣∣AB∣∣=∣x2-x1∣+∣y2-y1∣,給出下列三個(gè)命題:
① 若點(diǎn)C在線段AB上,則∣∣AC∣∣+∣∣CB∣∣=∣∣AB∣∣
② 在△ABC中,若∠C=90°,則∣∣AC∣∣2+∣∣CB∣∣2=∣∣AB∣∣2
③ 在△ABC中,∣∣AC∣∣+∣∣CB∣∣﹥∣∣AB∣∣ 其中真命題的個(gè)數(shù)為 
[     ]
A.0個(gè)   
B.1個(gè)   
C.2個(gè)   
D.3個(gè)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

30、對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:廈門 題型:單選題

對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年12月浙江省寧波市余姚市世南中學(xué)九年級(jí)數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:選擇題

對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第4章《視圖與投影》易錯(cuò)題集(28):4.1 視圖(解析版) 題型:選擇題

對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第24章《圖形的相似》中考題集(38):24.6 圖形與坐標(biāo)(解析版) 題型:選擇題

對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案