(2002•河南)已知a,b,c是△ABC三條邊的長(zhǎng),那么方程cx2+(a+b)x+=0的根的情況是( )
【答案】分析:判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號(hào),結(jié)合三角形三邊關(guān)系即可作出判斷.
解答:解:在此方程中△=b2-4ac=(a+b)2-4c×=(a+b)2-c2
∵a,b,c是△ABC三條邊的長(zhǎng)
∴a>0,b>0,c>0.c<a+b,即(a+b)2>c2
∴△=(a+b)2-c2>0
故方程有兩個(gè)不相等的實(shí)數(shù)根.
又∵兩根的和是-<0,兩根的積是=>0
∴方程有兩個(gè)不等的負(fù)實(shí)根.
故選C
點(diǎn)評(píng):總結(jié):一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;
(3)△<0?方程沒(méi)有實(shí)數(shù)根.
三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:填空題

(2002•河南)已知y與(2x+1)成反比例,且當(dāng)x=1時(shí),y=2,那么當(dāng)x=0時(shí),y=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•河南)已知,如圖,直線與x軸、y軸分別交于A、B兩點(diǎn),⊙M經(jīng)過(guò)原點(diǎn)O及A、B兩點(diǎn).
(1)求以O(shè)A、OB兩線段長(zhǎng)為根的一元二方程;
(2)C是⊙M上一點(diǎn),連接BC交OA于點(diǎn)D,若∠COD=∠CBO,寫(xiě)出經(jīng)過(guò)O、C、A三點(diǎn)的二次函數(shù)的解析式;
(3)若延長(zhǎng)BC到E,使DE=2,連接EA,試判斷直線EA與⊙M的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:填空題

(2002•河南)已知y與(2x+1)成反比例,且當(dāng)x=1時(shí),y=2,那么當(dāng)x=0時(shí),y=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年河南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•河南)已知,如圖,直線與x軸、y軸分別交于A、B兩點(diǎn),⊙M經(jīng)過(guò)原點(diǎn)O及A、B兩點(diǎn).
(1)求以O(shè)A、OB兩線段長(zhǎng)為根的一元二方程;
(2)C是⊙M上一點(diǎn),連接BC交OA于點(diǎn)D,若∠COD=∠CBO,寫(xiě)出經(jīng)過(guò)O、C、A三點(diǎn)的二次函數(shù)的解析式;
(3)若延長(zhǎng)BC到E,使DE=2,連接EA,試判斷直線EA與⊙M的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年河南省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•河南)已知y與(2x+1)成反比例,且當(dāng)x=1時(shí),y=2,那么當(dāng)x=0時(shí),y=   

查看答案和解析>>

同步練習(xí)冊(cè)答案