如圖,在梯形ABCD中,AD∥BC,AB=AD+BC,E為CD的中點(diǎn).
求證:AE⊥BE.
分析:取AB的中點(diǎn)F,并連接EF,可以得到EF為梯形的中位線,利用梯形的中位線定理即可證得結(jié)論.
解答:證明:取AB的中點(diǎn)F,并連接EF(3分)
∵AD∥BC,
∴EF=
1
2
(AD+CB)
∵AB=AD+BC
∴EF=
1
2
AB
∴△ABE直角三角形,AB是斜邊,
∴AE⊥BE.
點(diǎn)評(píng):考查梯形的常用輔助線方法的應(yīng)用;碰到中點(diǎn)問(wèn)題時(shí)長(zhǎng)利用梯形的中位線定理作出輔助線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長(zhǎng)為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案