(2005•宜賓)如圖,在某海濱城市O附近海面有一股臺風(fēng),據(jù)監(jiān)測,當(dāng)前臺風(fēng)中心位于該城市的東偏南70°方向200千米的海面P處,并以20千米/時的速度向西偏北25°的PQ的方向移動,臺風(fēng)侵襲范圍是一個圓形區(qū)域,當(dāng)前半徑為60千米,且圓的半徑以10千米/時速度不斷擴張.
(1)當(dāng)臺風(fēng)中心移動4小時時,受臺風(fēng)侵襲的圓形區(qū)域半徑增大到______千米;又臺風(fēng)中心移動t小時時,受臺風(fēng)侵襲的圓形區(qū)域半徑增大到______千米;
(2)當(dāng)臺風(fēng)中心移動到與城市O距離最近時,這股臺風(fēng)是否侵襲這座海濱城市?請說明理由(參考數(shù)據(jù)≈1.41,≈1.73).

【答案】分析:(1)根據(jù)題意易求;
(2)實質(zhì)就是將最近距離與區(qū)域半徑進行比較,所以需作垂線.作OH⊥PQ于點H,在Rt△OPH中,∠OPH=45°,OP=200,運用三角函數(shù)求出PH的長,從而求出時間再求半徑,比較后得結(jié)論.
解答:解:(1)60+10×4=100;(60+10t);

(2)作OH⊥PQ于點H,∴∠OHP=90°,
∵∠OPH=70°-25°=45°,
在等腰直角三角形OPH中,OP=200千米,
根據(jù)勾股定理可算得OH=100≈141(千米),
設(shè)經(jīng)過t小時時,臺風(fēng)中心從P移動到H,
則PH=20t=100,算得t=5(小時),
此時,受臺風(fēng)侵襲地區(qū)的圓的半徑為:
60+10×5≈130.5(千米)<141(千米).
∴城市O不會受到侵襲.
點評:此題的難度在于半徑的變化,理解半徑又是隨時間的變化而變化,所以轉(zhuǎn)化為求時間,又已知速度,歸結(jié)為求路程即三角形邊長,解三角形求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點為M(2,-4),且過點A(-1,5),連接AM交x軸于點B.
(1)求這條拋物線的解析式;
(2)求點B的坐標(biāo);
(3)設(shè)點P(x,y)是拋物線在x軸下方、頂點左方一段上的動點,連接PO,以P為頂點、PO為腰的等腰三角形的另一頂點Q在x軸的垂線交直線AM于點R,連接PR,設(shè)△PQR的面積為S,求S與x之間的函數(shù)關(guān)系式;
(4)在上述動點P(x,y)中,是否存在使S△PQR=2的點?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2005•宜賓)如圖,反比例函數(shù)的圖象與一次函數(shù)y=-x+1的圖象在第二象限內(nèi)的交點坐標(biāo)(-1,n),則k的值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市青春中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點為M(2,-4),且過點A(-1,5),連接AM交x軸于點B.
(1)求這條拋物線的解析式;
(2)求點B的坐標(biāo);
(3)設(shè)點P(x,y)是拋物線在x軸下方、頂點左方一段上的動點,連接PO,以P為頂點、PO為腰的等腰三角形的另一頂點Q在x軸的垂線交直線AM于點R,連接PR,設(shè)△PQR的面積為S,求S與x之間的函數(shù)關(guān)系式;
(4)在上述動點P(x,y)中,是否存在使S△PQR=2的點?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點為M(2,-4),且過點A(-1,5),連接AM交x軸于點B.
(1)求這條拋物線的解析式;
(2)求點B的坐標(biāo);
(3)設(shè)點P(x,y)是拋物線在x軸下方、頂點左方一段上的動點,連接PO,以P為頂點、PO為腰的等腰三角形的另一頂點Q在x軸的垂線交直線AM于點R,連接PR,設(shè)△PQR的面積為S,求S與x之間的函數(shù)關(guān)系式;
(4)在上述動點P(x,y)中,是否存在使S△PQR=2的點?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2005•宜賓)如圖,反比例函數(shù)的圖象與一次函數(shù)y=-x+1的圖象在第二象限內(nèi)的交點坐標(biāo)(-1,n),則k的值是   

查看答案和解析>>

同步練習(xí)冊答案