(2007•赤峰)如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=6.在AC上取一點(diǎn)E,以BE為折痕,使AB的一部分與BC重合,A與BC延長(zhǎng)線上的點(diǎn)D重合,則CE的長(zhǎng)度為( )

A.3
B.6
C.
D.
【答案】分析:先解直角三角形再利用折疊的性質(zhì)計(jì)算.
解答:解:根據(jù)題意,Rt△ABC中,∠ACB=90°,BC=3,AB=6;
可得∠BAC=30°,故∠ABC=60°;
則以BE為折痕,使AB的一部分與BC重合,
故Rt△BCE中,∠CBE=∠ABE=30°,
則CE=3×tan30°=
故選C.
點(diǎn)評(píng):本題通過折疊變換考查學(xué)生的邏輯思維能力,解決此類問題,應(yīng)結(jié)合題意,最好實(shí)際操作圖形的折疊,易于找到圖形間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年3月中考數(shù)學(xué)第一次模擬考試卷(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)B,C的橫坐標(biāo),且此拋物線過點(diǎn)A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC相交于點(diǎn)Q,求點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在x軸上有一動(dòng)點(diǎn)M,當(dāng)MQ+MA取得最小值時(shí),求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)B,C的橫坐標(biāo),且此拋物線過點(diǎn)A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC相交于點(diǎn)Q,求點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在x軸上有一動(dòng)點(diǎn)M,當(dāng)MQ+MA取得最小值時(shí),求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江西省南昌市新民外國(guó)語學(xué)校數(shù)學(xué)中考模擬試卷(一)(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)B,C的橫坐標(biāo),且此拋物線過點(diǎn)A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC相交于點(diǎn)Q,求點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在x軸上有一動(dòng)點(diǎn)M,當(dāng)MQ+MA取得最小值時(shí),求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年安徽省安慶市桐城市白馬中學(xué)中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)B,C的橫坐標(biāo),且此拋物線過點(diǎn)A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC相交于點(diǎn)Q,求點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在x軸上有一動(dòng)點(diǎn)M,當(dāng)MQ+MA取得最小值時(shí),求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年內(nèi)蒙古赤峰市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•赤峰)如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)B,C的橫坐標(biāo),且此拋物線過點(diǎn)A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設(shè)此拋物線的頂點(diǎn)為P,對(duì)稱軸與線段AC相交于點(diǎn)Q,求點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在x軸上有一動(dòng)點(diǎn)M,當(dāng)MQ+MA取得最小值時(shí),求M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案