如圖,AB是⊙O的直徑,AC是弦,OD⊥AC于點(diǎn)D,過(guò)點(diǎn)A作⊙O的切線AP,AP與OD的延長(zhǎng)線交于點(diǎn)P,連接PC、BC.
(1)猜想:線段OD與BC有何數(shù)量和位置關(guān)系,并證明你的結(jié)論.
(2)求證:PC是⊙O的切線.

(1)猜想:OD∥BC,OD=BC.
證明:∵OD⊥AC,
∴AD=DC
∵AB是⊙O的直徑,
∴OA=OB…2分
∴OD是△ABC的中位線,
∴OD∥BC,OD=BC

(2)證明:連接OC,設(shè)OP與⊙O交于點(diǎn)E.
∵OD⊥AC,OD經(jīng)過(guò)圓心O,
,即∠AOE=∠COE
在△OAP和△OCP中,
,
∴△OAP≌△OCP,
∴∠OCP=∠OAP
∵PA是⊙O的切線,
∴∠OAP=90°.
∴∠OCP=90°,即OC⊥PC
∴PC是⊙O的切線.
分析:(1)根據(jù)垂徑定理可以得到D是AC的中點(diǎn),則OD是△ABC的中位線,根據(jù)三角形的中位線定理可以得到OD∥BC,CD=BC;
(2)連接OC,設(shè)OP與⊙O交于點(diǎn)E,可以證得△OAP≌△OCP,利用全等三角形的對(duì)應(yīng)角相等,以及切線的性質(zhì)定理可以得到:∠OCP=90°,即OC⊥PC,即可等證.
點(diǎn)評(píng):本題考查了切線的性質(zhì)定理以及判定定理,三角形的中位線定理,證明圓的切線的問(wèn)題常用的思路是根據(jù)切線的判定定理轉(zhuǎn)化成證明垂直的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽(yáng)光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓弧(如圖2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長(zhǎng)線上,其圓心角為90°,請(qǐng)你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問(wèn)題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對(duì)的圓心角的度數(shù)(精確到0.01度)及弧AB的長(zhǎng)度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測(cè)得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚(yú)餐船,如果從安全方面考慮,要求通過(guò)愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過(guò)愚溪橋?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽(yáng)光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊(cè)答案