如圖,在正方形ABCD的內(nèi)側(cè),作等邊三角形ADE,則∠AEB的度數(shù)是( 。
A.60°B.65°C.70°D.75°

∵正方形ABCD,
∴∠BAD=90°,AB=AD,
∵等邊△AED,
∴∠EAD=60°,AD=AE=AB,
∴∠BAE=90°-60°=30°,
∠ABE=∠AEB=
1
2
(180°-∠BAE)=75°.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長(zhǎng)是2,E是AB的中點(diǎn),延長(zhǎng)BC到點(diǎn)F使CF=AE.
(1)若把△ADE繞點(diǎn)D旋轉(zhuǎn)一定的角度時(shí),能否與△CDF重合?請(qǐng)說明理由.
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點(diǎn)G.求證:AH⊥ED,并求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD與EF的交點(diǎn).
(1)求證:△BCF≌△DCE;
(2)求證:BF=DE,BF⊥DE;
(3)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)邊長(zhǎng)為1的正方形,以它的對(duì)角線為邊向外做第二個(gè)正方形,再以第二個(gè)正方形的對(duì)角線為邊向外作第三個(gè)正方形,以此類推,則第四個(gè)正方形的邊長(zhǎng)為______,第n個(gè)正方形的邊長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,阿倉(cāng)用一張邊長(zhǎng)為27.6公分的正方形厚紙板,剪下邊長(zhǎng)皆為3.8公分的四個(gè)正方形,形成一個(gè)有眼、鼻、口的面具.求此面具的面積為多少平方公分( 。
A.552B.566.44C.656.88D.704

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為5的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)P,頂點(diǎn)A在x軸正半軸上運(yùn)動(dòng),頂點(diǎn)B在y軸正半軸上運(yùn)動(dòng)(x軸的正半軸、y軸的正半軸都不包含原點(diǎn)O),頂點(diǎn)C、D都在第一象限.
(1)當(dāng)點(diǎn)坐標(biāo)為A(4,0)時(shí),求點(diǎn)D的坐標(biāo);
(2)求證:OP平分∠AOB;
(3)直接寫出OP長(zhǎng)的取值范圍(不要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD和正方形CGEF(CG>BC),B、C、G在同一直線上,M為線段AE的中點(diǎn),試問:線段MD與線段MF的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn)且∠AEF=90°,EF交正方形外角平分線CF于點(diǎn)F,取邊AB的中點(diǎn)G,連接EG.
求證:EG=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)O為正方形ABCD的中心,M為射線OD上一動(dòng)點(diǎn)(M與點(diǎn)O,D不重合),以線段AM為一邊作正方形AMEF,連接FD.
(1)當(dāng)點(diǎn)M在線段OD上時(shí)(如圖1),線段BM與DF有怎樣的數(shù)量及位置關(guān)系?請(qǐng)判斷并直接寫出結(jié)果;
(2)當(dāng)點(diǎn)M在線段OD的延長(zhǎng)線上時(shí)(如圖2),(1)中的結(jié)論是否仍然成立?請(qǐng)結(jié)合圖2說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案