【題目】如圖,已知AB是⊙O的直徑,過(guò)點(diǎn)O作弦BC的平行線,交過(guò)點(diǎn)A的切線AP于點(diǎn)P,連接AC.
(1)求證:△ABC∽△POA;
(2)若OB=2,OP=,求BC的長(zhǎng).
【答案】(1)證明見解析;(2)BC=.
【解析】
試題分析:(1)由BC∥OP可得∠AOP=∠B,根據(jù)直徑所對(duì)的圓周角為直角可知∠C=90°,再根據(jù)切線的性質(zhì)知∠OAP=90°,從而可證△ABC∽△POA;
(2)根據(jù)△ABC∽△POA,和已知邊的長(zhǎng)可將BC的長(zhǎng)求出.
(1)證明:∵BC∥OP
∴∠AOP=∠B
∵AB是直徑
∴∠C=90°
∵PA是⊙O的切線,切點(diǎn)為A
∴∠OAP=90°
∴∠C=∠OAP
∴△ABC∽△POA;
(2)解:∵△ABC∽△POA
∴
∵OB=2,PO=
∴OA=2,AB=4
∴
∴BC=8
∴BC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C分別在坐標(biāo)軸上,頂點(diǎn)B的坐標(biāo)為,過(guò)點(diǎn)D和E的直線分別與AB,BC交于點(diǎn)M,N。
(1)、求直線DE的解析式和點(diǎn)M的坐標(biāo);
(2)、若反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)M,求該反比例函數(shù)的解析式,并通過(guò)計(jì)算判斷點(diǎn)N是否在該函數(shù)的圖象上;
(3)、若反比例函數(shù)的圖象與△MNB有公共點(diǎn),請(qǐng)直接寫出m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成三角形的是( )
A. 3,4,8 B. 5,6,11 C. 5,6,10 D. 6,6,13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】江蘇衛(wèi)視《最強(qiáng)大腦》第三季正在熱播,據(jù)不完全統(tǒng)計(jì)該節(jié)目又創(chuàng)收視新高,全國(guó)約有85600000人在收看,全國(guó)觀看《最強(qiáng)大腦》第三季的人數(shù)用科學(xué)計(jì)數(shù)法表示為________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四舍五入法對(duì)2.06032分別取近似值,其中錯(cuò)誤的是( )
A. 2.1(精確到0.1) B. 2.06(精確到千分位)
C. 2.06(精確到百分位) D. 2.0603(精確到0.0001)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫出平移后的△DEF,并求△DEF的面積;
(2)若連接AD、CF,則這兩條線段之間的關(guān)系是________________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a2+a3=a5
B.a2a3=a6
C.(a2b3)3=a5b6
D.(a2)3=a6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com