(1)    RtABC中,∠C=90°,AC=6,BC=8,C為圓心,r為半徑作圓,當(dāng)r=4時(shí),

CAB________;當(dāng)r=4.8時(shí),⊙CAB________;當(dāng)r=6時(shí)⊙CAB________.

 

答案:
解析:

相離,相切,相交

 


提示:

熟悉直線與圓的位置關(guān)系。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•湛江模擬)如圖,在Rt△AB′C′中,∠AC′B′=90°,∠B′AC′=45°,B′C′=3,Rt△ABC可以看作是由Rt△AB′C′繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)45°得到的,則AC的長(zhǎng)為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△AB中,∠B=90°,BC=15,AC=17,以AB為直徑作半圓,則此半圓的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,在Rt△AB′C′中,∠AC′B′=90°,∠B′AC′=45°,B′C′=3,Rt△ABC可以看作是由Rt△AB′C′繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)45°得到的,則AC的長(zhǎng)為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【答案】14。

【考點(diǎn)】軸對(duì)稱(chēng)-最短路線問(wèn)題;勾股定理;垂徑定理.

【專(zhuān)題】探究型.

【分析】先由MN=20求出⊙O的半徑,再連接OA、OB,由勾股定理得出OD、OC的長(zhǎng),作點(diǎn)B關(guān)于MN的對(duì)稱(chēng)點(diǎn)B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過(guò)點(diǎn)B′作AC的垂線,交AC的延長(zhǎng)線于點(diǎn)E,在Rt△AB′E中利用勾股定理即可求出AB′的值.

【解答】∵M(jìn)N=20,

∴⊙O的半徑=10,

連接OA、OB,

在Rt△OBD中,OB=10,BD=6,

∴OD==8;

同理,在Rt△AOC中,OA=10,AC=8,

∴OC==6,

∴CD=8+6=14,

作點(diǎn)B關(guān)于MN的對(duì)稱(chēng)點(diǎn)B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過(guò)點(diǎn)B′作AC的垂線,交AC的延長(zhǎng)線于點(diǎn)E,

在Rt△AB′E中,

∵AE=AC+CE=8+6=14,B′E=CD=14,

∴AB′==14

故答案為:14

【點(diǎn)評(píng)】本題考查的是軸對(duì)稱(chēng)-最短路線問(wèn)題、垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年廣東省湛江市中考調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在Rt△AB′C′中,∠AC′B′=90°,∠B′AC′=45°,B′C′=3,Rt△ABC可以看作是由Rt△AB′C′繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)45°得到的,則AC的長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案