如圖,等腰梯形ABCD的BC邊位于x軸上,A點位于y軸上,∠ABC=45°,BD平分AO(O為坐標原點),并且B(-1,0).
(1)求過點A、B、C的拋物線的解析式;
(2)P為(1)中拋物線上異于B的一點,過B、P兩點的直線將梯形ABCD分成面積相等的兩部分,求P點的坐標;
(3)在(1)中拋物線上是否存在點Q使△ABQ為直角三角形?若存在,求△ABQ的面積;若不存在,則說明理由.

【答案】分析:(1)根據(jù)B點的坐標可以求出OB的長度,通過解直角三角形可以AO的長度而求出A點的坐標及AB的長度,然后求出AD的長度根據(jù)解直角三角形求出C點的坐標,最后利用待定系數(shù)法求出拋物線的解析式.
(2)如圖根據(jù)條件中的面積關(guān)系求出△BCE的BC邊上的高,即知道E點的總坐標,再 根據(jù)C、D的坐標求出CD的解析式,利用E點的縱坐標求出E點的坐標,再求出直線BE的解析式,最后代入拋物線的解析式求出P點坐標.
(3)如圖分為兩種情況使△ABQ為直角三角形,利用三角形的角的特殊關(guān)系45°求出線段的長度,從而求出Q點的坐標,根據(jù)Q點的坐標求出△ABQ的面積.BO,BD平分
解答:解:(1)∵AD∥BO,BD平分AO
∴AD=BO
∵等腰梯形ABCD的∠ABC=45°
∴OC=2OB,OA=OB
即A(0,1),B(-1,0),C(2,0)
設(shè)拋物線的解析式為:y=a(x+1)(x-2),把A(0,1)代入得,a=-
∴拋物線的解析式為:y=-+x+1;

(2)設(shè)直線BP交CD于E(m,n),由題意知2S△BEC=S梯形ABCD
∴2×=
∴n=
用待定系數(shù)法求出直線CD的解析式為:y=-x+2
把E點的坐標代入CD的解析式得m=
∴E(,
用待定系數(shù)法求出BE的解析式為y=x+
與拋物線的解析式y(tǒng)=-+x+1建立方程組求得
∴P(,

(3)存在
①當∠BAQ=90°時,如圖,AQ與x軸交于F,做QH⊥x軸于H,設(shè)Q(m,t)
∴△ABF、△QHF都為等腰直角三角形
∴F(1,0),QH=FH,即-t=m-1,t=-m2+m+1,求得m=3
∴QH=FH=2
∴AQ=AF+FQ=3
∴S△ABQ=+=3
②當∠ABQ=90°時,作QG⊥x軸于G,設(shè)Q(a,b)
∴△QGB為等腰直角三角形
∴QG=BG,即-b=a+1
∵b=-a2+a+1,
解得a=4,
∴BG=5,BQ=5
∴S△ABQ==5
綜上所述,S△ABQ=3或5.
點評:本題考查了等腰梯形的性質(zhì),待定系數(shù)法求函數(shù)的解析式,二元一次方程與一次函數(shù)的關(guān)系,直線函數(shù)與拋物線的交點坐標,三角形的面積的計算多個知識點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

14、如圖,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周長為40cm,則CD的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求證:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•昌平區(qū)二模)已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求證:AB=AD;
(2)求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,對角線BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度數(shù); 
(2)求梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延長BC到E,使CE=AD.
(1)求證:BD=DE;
(2)當DC=2時,求梯形面積.

查看答案和解析>>

同步練習冊答案