(2007•深圳)如圖,某貨船以24海里/時(shí)的速度將一批重要物資從A處運(yùn)往正東方向的M處,在點(diǎn)A處測(cè)得某島C在北偏東60°的方向上.該貨船航行30分鐘后到達(dá)B處,此時(shí)再測(cè)得該島在北偏東30°的方向上,已知在C島周?chē)?海里的區(qū)域內(nèi)有暗礁.若繼續(xù)向正東方向航行,該貨船有無(wú)觸礁危險(xiǎn)?試說(shuō)明理由.

【答案】分析:過(guò)點(diǎn)C作CD⊥AD于點(diǎn)D,分別在RT△CBD、RT△CAD中用式子表示CD、AD,再根據(jù)已知求得BD、CD的長(zhǎng),從而再將CD于9比較,若大于9則無(wú)危險(xiǎn),否則有危險(xiǎn).
解答:解:過(guò)點(diǎn)C作CD⊥AD于點(diǎn)D,
∵∠EAF=60°,∠FBC=30°,
∴∠CAB=30°,∠CBD=60°.
∴在RT△CBD中,CD=BD.
在RT△CAD中,AD=CD=3BD=24×0.5+BD,
∴BD=6.
∴CD=6
∵6>9,
∴貨船繼續(xù)向正東方向行駛無(wú)觸礁危險(xiǎn).
點(diǎn)評(píng):解一般三角形,求三角形的邊或高的問(wèn)題一般可以轉(zhuǎn)化為解直角三角形的問(wèn)題,解決的方法就是作高線(xiàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•深圳)如圖,在平面直角坐標(biāo)系中,正方形AOCB的邊長(zhǎng)為1,點(diǎn)D在x軸的正半軸上,且OD=OB,BD交OC于點(diǎn)E.
(1)求∠BEC的度數(shù);
(2)求點(diǎn)E的坐標(biāo);
(3)求過(guò)B,O,D三點(diǎn)的拋物線(xiàn)的解析式.(計(jì)算結(jié)果要求分母有理化.參考資料:把分母中的根號(hào)化去,叫分母有理化.例如:

;
等運(yùn)算都是分母有理化)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•深圳)如圖,在平面直角坐標(biāo)系中,正方形AOCB的邊長(zhǎng)為1,點(diǎn)D在x軸的正半軸上,且OD=OB,BD交OC于點(diǎn)E.
(1)求∠BEC的度數(shù);
(2)求點(diǎn)E的坐標(biāo);
(3)求過(guò)B,O,D三點(diǎn)的拋物線(xiàn)的解析式.(計(jì)算結(jié)果要求分母有理化.參考資料:把分母中的根號(hào)化去,叫分母有理化.例如:
;
;
等運(yùn)算都是分母有理化)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(14)(解析版) 題型:解答題

(2007•深圳)如圖,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一點(diǎn),∠BAE=∠MCE,∠MBE=45°.
(1)求證:BE=ME;
(2)若AB=7,求MC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•深圳)如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)與直線(xiàn)相交于A(yíng),B兩點(diǎn).
(1)求線(xiàn)段AB的長(zhǎng);
(2)若一個(gè)扇形的周長(zhǎng)等于(1)中線(xiàn)段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線(xiàn)段AB的垂直平分線(xiàn)分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•深圳)如圖,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一點(diǎn),∠BAE=∠MCE,∠MBE=45°.
(1)求證:BE=ME;
(2)若AB=7,求MC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案