精英家教網 > 初中數學 > 題目詳情
已知一次函數y1=x+b(b為常數)的圖象與反比例函數y2=
kx
(k為常數,且k≠0 )的圖象相交于點P(3,1).
(I )求這兩個函數的解析式:
(II)當x>3時,試判斷y1與y2的大小,并說明理由.
分析:(I)利用待定系數法,將P(3,1)代入一次函數解析式與反比例函數解析式,即可得到答案;
(II)當x=3時,y1=y2=1,再利用函數的性質一次函數y1隨x的增大而增大,反比例函數y2隨x的增大而減小,可以判斷出大小關系.
解答:解:(1)∵點P(3,1)在一次函數y1=x+b(b為常數)的圖象上,
∴1=3+b,
解得:b=-2,
∴一次函數解析式為:y1=x-2.
∵點P(3,1)在反比例函數y2=
k
x
(k為常數,且k≠0 )的圖象上,
∴k=3×1=3,
∴反比例函數解析式為:y2=
3
x
,

(II)y1>y2.理由如下:
當x=3時,y1=y2=1,
又當x>3時,y1隨x的增大而增大,反比例函數y2隨x的增大而減小,
∴當x>3時,y1>y2
點評:此題主要考查了待定系數法求函數解析式和函數的性質,凡是圖象上的點,都能使函數解析式左右相等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、已知一次函數y1=2x和二次函數y2=2x2-2x+2;
(1)證明對任意實數x,都有y1≤y2
(2)求二次函數y3,其圖象過點(-1,2),且對任意實數x,都有y1≤y3≤y2

查看答案和解析>>

科目:初中數學 來源: 題型:

已知一次函數y1=ax+b的圖象與反比例函數y2=
kx
的圖象相交于A、B兩點,坐標分別為(-精英家教網2,4)、(4,-2).
(1)求兩個函數的解析式;
(2)結合圖象寫出y1<y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•德陽)已知一次函數y1=x+m的圖象與反比例函數y2=
6x
的圖象交于A、B兩點.已知當x>1時,y1>y2;當0<x<1時,y1<y2
(1)求一次函數的解析式;
(2)已知雙曲線在第一象限上有一點C到y(tǒng)軸的距離為3,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知一次函數y1=ax+b的圖象與反比例函數y2=
kx
的圖象相交于A、B兩點,坐標分別為(-2,4)、(4,-2).
(1)求兩個函數的解析式;
(2)結合圖象寫出y1<y2時,x的取值范圍;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知一次函數y1=kx+b的圖象經過A(1,2)、B(-1,0)兩點,y2=mx+n的圖象經過A、C(3,0)兩點,則不等式組0<kx+b<mx+n的解集是( 。

查看答案和解析>>

同步練習冊答案