如圖,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,若將AC沿AD折疊,使它落在斜邊AB上,且與AE重合,求CD的長(zhǎng).
分析:先根據(jù)勾股定理求出AB的長(zhǎng),設(shè)CD=xcm,則BD=(8-x)cm,再由圖形翻折變換的性質(zhì)可知AE=AC=6cm,DE=CD=xcm,進(jìn)而可得出BE的長(zhǎng),在Rt△BDE中利用勾股定理即可求出x的值,即可得出CD的長(zhǎng).
解答:解:∵△ABC是直角三角形,AC=6cm,BC=8cm,
∴AB=
AC2+BC2
=
62+82
=10(cm),
∵△AED是△ACD翻折而成,
∴AE=AC=6cm,∠AED=90°,
設(shè)DE=CD=xcm,
∴BE=AB-AE=10-6=4(cm),
在Rt△BDE中,BD2=DE2+BE2,
即(8-x)2=42+x2
解得:x=3.
故CD的長(zhǎng)為3cm.
點(diǎn)評(píng):本題考查了折疊的性質(zhì)和勾股定理的知識(shí),解答本題的關(guān)鍵是理解折疊前后圖形的形狀和大小不變,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫(xiě)作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(zhǎng)(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長(zhǎng)為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案