如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點,已知BC∥x軸,點A在x軸的負半軸上,點C在y軸上,且AC=BC.

(1)求拋物線的對稱軸;

(2)求A點坐標(biāo)并求拋物線的解析式;

(3)若點P在x軸下方且在拋物線對稱軸上的動點,是否存在△PAB是等腰三角形?若存在,請直接作出,不存在,請說明理由.

解:(1)y=ax2-5ax+4,

對稱軸:x=-=;…………………………………2分

(2)經(jīng)過△ABC的三個頂點,已知BC∥x軸,點A在x軸上,點C在y上,且AC=BC,

令x=0,y=4,可知C點坐標(biāo)(0,4),……………………1分

BC∥x軸,所以B點縱坐標(biāo)也為4,

又∵BC兩點關(guān)于對稱軸x=5/2對稱,

即:(xB+0)/2=5/2,

xB=5,

∴B點坐標(biāo)(5,4).…………………………1分

A點在x軸上,設(shè)A點坐標(biāo)(m,0),

AC=BC,即AC2=BC2,

AC2=42+m2

BC=5,

∴42+m2=52,

∴m=±3,

∴A點坐標(biāo)(-3,0),…………………………1分

將A點坐標(biāo)之一(-3,0)代入y=ax2-5ax+4,

0=9a+15a+4,

a=-1/6,

y=-1/6x2+5/6x+4;…………………………………1分

將A點坐標(biāo)之一(3,0)代入y=ax2-5ax+4,

0=9a-15a+4,

a=2/3,

y=2/3 x2-2/3x+4.………………………………1分

故函數(shù)關(guān)系式為:y=-1/6x2+5/6x+4,或者y=2/3x2-2/3x+4.

(3)存在符合條件的點P共有3個.如圖所示 ………………………3分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標(biāo),寫出一條正確的結(jié)論,并通過計算說明;
(3)設(shè)A,B兩點的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當(dāng)x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標(biāo)原點,拋物線上一點C的橫坐標(biāo)為1.
(1)求A,B兩點的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標(biāo);
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時,求點M、N的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案