【題目】如圖,在四邊形紙片ABCD中,∠B=∠D=90°,點E,F(xiàn)分別在邊BC,CD上,將AB,AD分別沿AE,AF折疊,點B,D恰好都和點G重合,∠EAF=45°.
(1)求證:四邊形ABCD是正方形;
(2)求證:三角形ECF的周長是四邊形ABCD周長的一半;
(3)若EC=FC=1,求AB的長度.
【答案】(1)見解析;(2)見解析;(3)+1
【解析】分析:(1)由題意得,∠BAE=∠EAG,∠DAF=∠FAG,于是得到∠BAD=2∠EAF=90°,推出四邊形ABCD是矩形,根據(jù)正方形的判定定理即可得到結(jié)論;
(2)根據(jù)EG=BE,FG=DF,得到EF=BE+DF,于是得到△ECF的周長=EF+CE+CF=BE+DF+CE+CF=BC+CD,即可得到結(jié)論;
(3)根據(jù)EC=FC=1,得到BE=DF,根據(jù)勾股定理得到EF=,于是得到結(jié)論.
詳(1)證明:由題意得,∠BAE=∠EAG,∠DAF=∠FAG,
∴∠BAD=2∠EAF=90°,
∴四邊形ABCD是矩形,
∵AB=AG,AD=AG,
∴AB=AD,
∴四邊形ABCD是正方形;
(2)證明:∵EG=BE,FG=DF,
∴EF=BE+DF,
∴△ECF的周長=EF+CE+CF=BE+DF+CE+CF=BC+CD,
∴三角形ECF的周長是四邊形ABCD周長的一半;
(3)∵EC=FC=1,
∴BE=DF,
∴EF=,
∵EF=BE+DF,
∴BE=DF=EF=,
∴AB=BC=BE+EC=+1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校假期由校長帶領(lǐng)該校“三好學(xué)生”去旅游,甲旅行社說“若校長買全票一張,則學(xué)生半價.”乙旅行社說“全部人六折優(yōu)惠”若全票價是1200元,則:
(1)若學(xué)生人數(shù)是20人,甲、乙旅行社收費分別是多少?
(2)當(dāng)學(xué)生人數(shù)的多少時,兩家旅行社的收費一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句正確的個數(shù)是( )
①收入增加100元與支出減少200元是一對具有相反意義的量;
②數(shù)軸上原點兩側(cè)的數(shù)互為相反數(shù);
③若一個數(shù)小于他的絕對值,則這個數(shù)是負數(shù);
④若a、b互為相反數(shù),則與也互為相反數(shù)
A.1個B.2個C.3個D.0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則,即AD=csinB,AD=bsinC,于是csinB=bsinC,即 ,同理有: ,所以.
即:在一個銳角三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.
(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A= ;AC= ;
(2)某次巡邏中,如圖(3),我漁政船在C處測得釣魚島A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政船距釣魚島A的距離AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017山東省萊蕪市)如圖,正五邊形ABCDE的邊長為2,連結(jié)AC、AD、BE,BE分別與AC和AD相交于點F、G,連結(jié)DF,給出下列結(jié)論:①∠FDG=18°;②FG=3﹣;③(S四邊形CDEF)2=9+2;④DF2﹣DG2=7﹣2.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
點A、B在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為|AB|
當(dāng)A、B兩點中有一點在原點時,不妨設(shè)點A在原點(如圖1)|AB|=|OB|=|b|=|a﹣b|;
當(dāng)A、B兩點都不在原點時
①當(dāng)點A、B都在原點的右邊(如圖2)
|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
②當(dāng)點A、B都在原點的左邊(如圖3)
|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|
③當(dāng)點A、B在原點的兩邊(如圖4)
|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|
回答下列問題:
(1)數(shù)軸上表示1和5的兩點之間的距離是 ,數(shù)軸上表示1和﹣3的兩點之間的距離是 ;
(2)數(shù)軸上若點A表示的數(shù)是x,點B表示的數(shù)是﹣2,則點A和B之間的距離是 ,若|AB|=3,那么x為 ;
(3)當(dāng)x是 時,代數(shù)式|x+2|+|x﹣1|=5;
(4)若點A表示的數(shù)﹣1,點B與點A的距離是10,且點B在點A的右側(cè),動點P、Q同時從A、B出發(fā)沿數(shù)軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒個單位長度,求運動幾秒后,點Q與點P相距1個單位?(請寫出必要的求解過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料一:如圖1,由課本91頁例2畫函數(shù)y=﹣6x與y=﹣6x+5可知,直線y=﹣6x+5可以由直線y=﹣6x向上平移5個單位長度得到由此我們得到正確的結(jié)論一:在直線L1:y=K1x+b1與直線L2:y=K2x+b2中,如果K1=K2 且b1≠b2 ,那么L1∥L2,反過來,也成立.
材料二:如圖2,由課本92頁例3畫函數(shù)y=2x﹣1與y=﹣0.5x+1可知,利用所學(xué)知識一定能證出這兩條直線是互相垂直的.由此我們得到正確的結(jié)論二:在直線L1:y=k1x+b1 與L2:y=k2x+b2 中,如果k1·k2=-1那么L1⊥L2,反過來,也成立
應(yīng)用舉例
已知直線y=﹣x+5與直線y=kx+2互相垂直,則﹣k=﹣1.所以k=6
解決問題
(1)請寫出一條直線解析式______,使它與直線y=x﹣3平行.
(2)如圖3,點A坐標為(﹣1,0),點P是直線y=﹣3x+2上一動點,當(dāng)點P運動到何位置時,線段PA的長度最?并求出此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=80°,OC為從O點引出的任意一條射線,若OM平分∠AOC,ON平分∠BOC,則∠MON的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對自己上學(xué)路線的長度進行了20次測量,得到20個數(shù)據(jù)x1,x2,…,x20,已知x1+x2+…+x20=2019,當(dāng)代數(shù)式(x﹣x1)2+(x﹣x2)2+…+(x﹣x20)2取得最小值時,x的值為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com