如圖,AB是⊙O的直徑, ,AB=5,BD=4,則sin∠ECB=        
.

試題解析:連接AD,在Rt△ABD中利用勾股定理求出AD,證明△DAC∽△DBA,利用對應邊成比例的知識,可求出CD、AC,繼而根據(jù)sin∠ECB=sin∠DCA= ,即可得出答案.
連接AD,則∠ADB=90°,

在Rt△ABD中,AB=5,BD=4,
則AD==3,
,
∴∠DAC=∠DBA,
∴△DAC∽△DBA,

∴CD=,
∴AC==,
∴sin∠ECB=sin∠DCA=
故答案為:
考點: (1)相似三角形的判定與性質(zhì);(2)圓周角定理;(3)銳角三角函數(shù)的定義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在6×8的網(wǎng)格圖中,每個小正方形邊長均為1,點O和△ABC的頂點均為小正方形的頂點.

⑴以O為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比為1:2
⑵連接⑴中的AA′,求四邊形AA′C′C的周長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,正方形ABCD的邊長為a,BM,DN分別平分正方形的兩個外角,且滿足 ∠MAN=45°,連結(jié)MC,NC,MN.

(1)填空:與△ABM相似的三角形是△       ,BM·DN=        ;(用含a的代數(shù)式表示)
(2)求∠MCN的度數(shù);
(3)猜想線段BM,DN和MN之間的數(shù)量關(guān)系并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在某時刻的陽光照耀下,身高160cm的小華的影長為80cm,她的身旁的旗桿影長10m,則旗桿高為______m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等腰Rt△ABC的直角邊BC在x軸上,斜邊AC上的中線BD交y軸于點E,雙曲線的圖象經(jīng)過點A.若△BEC的面積為,則k的值為         

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,菱形ABCD中,點M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,則AN=(   )

A.3         B.4          C.5         D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知△ABC∽△DEF,且AB:DE=1:2,則△ABC的周長與△DEF的周長之比為 (   )
A.2:1B.1:2C.1:4D.4:1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知如圖,AB⊥BD,ED⊥BD,C是線段BD的中點,且AC⊥CE,ED=1,BD=4,那么AB的值(   )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠A=36°,AB=AC,AB的垂直平分線OD交AB于點O,交AC于點D,連接BD,下列結(jié)論錯誤的是
A.∠C=2∠AB.BD平分∠ABC
C.SBCD=SBODD.點D為線段AC的黃金分割點

查看答案和解析>>

同步練習冊答案